
Marco Baity-Jesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6570088/publications.pdf Version: 2024-02-01

MARCO RAITV-IESI

#	Article	IF	CITATIONS
1	Predicting chemical hazard across taxa through machine learning. Environment International, 2022, 163, 107184.	10.0	21
2	Temperature chaos is present in off-equilibrium spin-glass dynamics. Communications Physics, 2021, 4, .	5.3	13
3	Revisiting the concept of activation in supercooled liquids. European Physical Journal E, 2021, 44, 77.	1.6	7
4	Underwater dual-magnification imaging for automated lake plankton monitoring. Water Research, 2021, 203, 117524.	11.3	18
5	Deep Learning Classification of Lake Zooplankton. Frontiers in Microbiology, 2021, 12, 746297.	3.5	14
6	Effective traplike activated dynamics in a continuous landscape. Physical Review E, 2020, 101, 052304.	2.1	6
7	Jamming transition as a paradigm to understand the loss landscape of deep neural networks. Physical Review E, 2019, 100, 012115.	2.1	44
8	The Mpemba effect in spin glasses is a persistent memory effect. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15350-15355.	7.1	59
9	Precursors of the spin glass transition in three dimensions. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 084016.	2.3	4
10	Maximum-energy records in glassy energy landscapes. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 093302.	2.3	4
11	On mean-field theories of dynamics in supercooled liquids. Journal of Chemical Physics, 2019, 151, 084503.	3.0	13
12	Comparing dynamics: deep neural networks versus glassy systems. Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 124013.	2.3	31
13	Activated aging dynamics and effective trap model description in the random energy model. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 013301.	2.3	24
14	Aging Rate of Spin Glasses from Simulations Matches Experiments. Physical Review Letters, 2018, 120, 267203.	7.8	29
15	Activated dynamics: An intermediate model between the random energy model and thep-spin model. Physical Review E, 2018, 98, 012133.	2.1	13
16	A statics-dynamics equivalence through the fluctuation–dissipation ratio provides a window into the spin-glass phase from nonequilibrium measurements. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1838-1843.	7.1	23
17	Matching Microscopic and Macroscopic Responses in Glasses. Physical Review Letters, 2017, 118, 157202.	7.8	31
18	Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition. Journal of Statistical Physics, 2017, 167, 735-748.	1.2	49

MARCO BAITY-JESI

#	Article	IF	CITATIONS
19	Inherent structures inm-component spin glasses. Physical Review B, 2015, 91, .	3.2	6
20	Soft Modes, Localization, and Two-Level Systems in Spin Glasses. Physical Review Letters, 2015, 115, 267205.	7.8	49
21	Dynamics and Correlations among Soft Excitations in Marginally Stable Glasses. Physical Review Letters, 2015, 114, 247208.	7.8	7
22	The three-dimensional Ising spin glass in an external magnetic field: the role of the silent majority. Journal of Statistical Mechanics: Theory and Experiment, 2014, 2014, P05014.	2.3	38
23	Dynamical transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>D</mml:mi><mml:mo>=spin glass in an external magnetic field. Physical Review E, 2014, 89, 032140.</mml:mo></mml:mrow></mml:math 	ɔ> ₂nıml: m	ın x30x /mml:n
24	Phase transition in three-dimensional Heisenberg spin glasses with strong random anisotropies through a multi-GPU parallelization. Physical Review B, 2014, 89, .	3.2	24
25	Janus II: A new generation application-driven computer for spin-system simulations. Computer Physics Communications, 2014, 185, 550-559.	7.5	40
26	Critical parameters of the three-dimensional Ising spin glass. Physical Review B, 2013, 88, .	3.2	82
27	Spin Glass Simulations on the Janus Architecture: A Desperate Quest for Strong Scaling. Lecture Notes in Computer Science, 2013, , 528-537.	1.3	1
28	Reconfigurable computing for Monte Carlo simulations: Results and prospects of the Janus project. European Physical Journal: Special Topics, 2012, 210, 33-51.	2.6	21