Houzhang Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6569747/publications.pdf

Version: 2024-02-01

139 papers 4,304 citations

33 h-index 59 g-index

139 all docs

139 docs citations

139 times ranked 2700 citing authors

#	Article	IF	CITATIONS
1	Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Progress in Energy and Combustion Science, 2016, 52, 1-61.	31.2	750
2	The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium: A study from ash evaporating to condensing. Applied Thermal Engineering, 2015, 80, 150-159.	6.0	248
3	Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Conversion and Management, 2016, 118, 399-405.	9.2	138
4	Effect of silicon–aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal. Fuel, 2016, 181, 1224-1229.	6.4	117
5	Thermogravimetric study on the Co-combustion characteristics of oily sludge with plant biomass. Thermochimica Acta, 2016, 633, 69-76.	2.7	100
6	NOx and SOx emissions of a high sulfur self-retention coal during air-staged combustion. Fuel, 2008, 87, 723-731.	6.4	95
7	Investigations on biomass slagging in utility boiler: Criterion numbers and slagging growth mechanisms. Fuel Processing Technology, 2014, 128, 499-508.	7.2	94
8	Further study on biomass ash characteristics at elevated ashing temperatures: The evolution of K, Cl, S and the ash fusion characteristics. Bioresource Technology, 2013, 129, 642-645.	9.6	76
9	Combustibility analysis of high-carbon fine slags from an entrained flow gasifier. Journal of Environmental Management, 2020, 271, 111009.	7.8	75
10	Investigation of characteristics and formation mechanisms of deposits on different positions in full-scale boiler burning high alkali coal. Applied Thermal Engineering, 2017, 119, 449-458.	6.0	72
11	Experimental investigation on biomass co-firing in a 300 MW pulverized coal-fired utility furnace in China. Proceedings of the Combustion Institute, 2011, 33, 2725-2733.	3.9	71
12	Synergistic effects of biomass and polyurethane co-pyrolysis on the yield, reactivity, and heating value of biochar at high temperatures. Fuel Processing Technology, 2019, 194, 106127.	7.2	69
13	Effect of potassium-doping and oxygen concentration on soot oxidation in O 2 /CO 2 atmosphere: A kinetics study by thermogravimetric analysis. Energy Conversion and Management, 2017, 149, 686-697.	9.2	68
14	Improving the removal of particles and trace elements from coal-fired power plants by combining a wet phase transition agglomerator with wet electrostatic precipitator. Journal of Cleaner Production, 2017, 161, 1459-1465.	9.3	68
15	Pilot-scale study on water and latent heat recovery from flue gas using fluorine plastic heat exchangers. Journal of Cleaner Production, 2017, 161, 1416-1422.	9.3	67
16	Investigation on the fast co-pyrolysis of sewage sludge with biomass and the combustion reactivity of residual char. Bioresource Technology, 2017, 239, 302-310.	9.6	64
17	Investigation on ash deposition characteristics during Zhundong coal combustion. Journal of the Energy Institute, 2018, 91, 33-42.	5.3	56
18	Migration and Emission Characteristics of Trace Elements in a 660 MW Coal-Fired Power Plant of China. Energy & Energy & 2016, 30, 5937-5944.	5.1	55

#	Article	IF	CITATIONS
19	Characteristics of fine particulate matter formation during combustion of lignite riched in AAEM (alkali and alkaline earth metals) and sulfur. Fuel, 2018, 211, 206-213.	6.4	55
20	Study on extracting available salt from straw/woody biomass ashes and predicting its slagging/fouling tendency. Journal of Cleaner Production, 2017, 155, 164-171.	9.3	54
21	Characteristics of HCN Removal Using CaO at High Temperatures. Energy & Ene	5.1	50
22	Nitrogen, Sulfur, and Chlorine Transformations during the Pyrolysis of Straw. Energy & Straw, Fuels, 2010, 24, 5215-5221.	5.1	48
23	Particulate matter emission and K/S/Cl transformation during biomass combustion in an entrained flow reactor. Journal of the Energy Institute, 2018, 91, 835-844.	5.3	47
24	Experimental study on the coexistent dual slagging in biomass-fired furnaces: Alkali- and silicate melt-induced slagging. Proceedings of the Combustion Institute, 2015, 35, 2405-2413.	3.9	44
25	Study of ash fouling on the blade of induced fan in a 330 MW coal-fired power plant with ultra-low pollutant emission. Applied Thermal Engineering, 2017, 118, 283-291.	6.0	44
26	Aggravated fine particulate matter emissions from heating-upgraded biomass and biochar combustion: The effect of pretreatment temperature. Fuel Processing Technology, 2018, 171, 1-9.	7.2	42
27	Migration Behavior of Trace Elements at a Coal-Fired Power Plant with Different Boiler Loads. Energy &	5.1	41
28	Low NO combustion and SCR flow field optimization in a low volatile coal fired boiler. Journal of Environmental Management, 2018, 220, 30-35.	7.8	40
29	Investigation on high temperature corrosion of water-cooled wall tubes at a 300ÂMW boiler. Journal of the Energy Institute, 2020, 93, 377-386.	5.3	40
30	Emission characteristics of condensable particulate matter and sulfur trioxide from coal-fired power plants. Journal of the Energy Institute, 2021, 94, 146-156.	5.3	40
31	A kinetic study on the catalysis of KCl, K2SO4, and K2CO3 during oxy-biomass combustion. Journal of Environmental Management, 2018, 218, 50-58.	7.8	39
32	Study on Deposits on the Surface, Upstream, and Downstream of Bag Filters in a 12 MW Biomass-Fired Boiler. Energy & Study & St	5.1	36
33	Soot formation during polyurethane (PU) plastic pyrolysis: The effects of temperature and volatile residence time. Energy Conversion and Management, 2018, 164, 353-362.	9.2	35
34	Characteristics of ash and slag from four biomass-fired power plants: Ash/slag ratio, unburned carbon, leaching of major and trace elements. Energy Conversion and Management, 2020, 214, 112897.	9.2	35
35	Numerical evaluation of different pulverized coal and solid recovered fuel co-firing modes inside a large-scale cement calciner. Applied Energy, 2016, 184, 1292-1305.	10.1	34
36	Optimization of coal reburning in a 1MW tangentially fired furnace. Fuel, 2007, 86, 1169-1175.	6.4	33

3

#	Article	IF	Citations
37	Synergistic effect of biomass and polyurethane waste co-pyrolysis on soot formation at high temperatures. Journal of Environmental Management, 2019, 239, 306-315.	7.8	32
38	Nitrogen evolution, NOX formation and reduction in pressurized oxy coal combustion. Renewable and Sustainable Energy Reviews, 2022, 157, 112020.	16.4	31
39	Study of optimal pulverized coal concentration in a four-wall tangentially fired furnace. Applied Energy, 2011, 88, 1164-1168.	10.1	30
40	Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2012, 109, 403-412.	3.6	30
41	Evaluation of aluminum ash in alleviating the ash deposition of high-sodium and high-iron coal. Fuel, 2020, 273, 117701.	6.4	30
42	Kinetics investigation on the combustion of biochar in <scp>O</scp> ₂ atmosphere. Environmental Progress and Sustainable Energy, 2015, 34, 923-932.	2.3	29
43	Characteristics and Mechanism of Soot Formation during the Fast Pyrolysis of Biomass in an Entrained Flow Reactor. Energy & Entrained Flow Reactor.	5.1	28
44	Effects of APCDs on PM emission: A case study of a 660†MW coal-fired unit with ultralow pollutants emission. Applied Thermal Engineering, 2019, 155, 418-427.	6.0	28
45	The condensation and thermodynamic characteristics of alkali compound vapors on wall during wheat straw combustion. Fuel, 2017, 187, 33-42.	6.4	26
46	Hot corrosion behaviors of TP347H and HR3C stainless steel with KCl deposit in oxy-biomass combustion. Journal of Environmental Management, 2020, 263, 110411.	7.8	26
47	Emission characteristics of particulate matters from a 30ÂMW biomass-fired power plant in China. Renewable Energy, 2020, 155, 225-236.	8.9	25
48	Emission Characteristics of Particulate Matter from Two Ultralow-Emission Coal-Fired Industrial Boilers in Xi'an, China. Energy & Energy & 1944-1954.	5.1	24
49	Experimental and modeling study of the long cylindrical oily sludge drying process. Applied Thermal Engineering, 2015, 91, 354-362.	6.0	23
50	Proposal and techno-economic analysis of a novel system for waste heat recovery and water saving in coal-fired power plants: A case study. Journal of Cleaner Production, 2021, 281, 124372.	9.3	23
51	Assessment of sulfur trioxide formation due to enhanced interaction of nitrogen oxides and sulfur oxides in pressurized oxy-combustion. Fuel, 2021, 290, 119964.	6.4	23
52	Effect of different additives on ash fusion characteristic and mineral phase transformation of iron-rich Zhundong coal. Fuel, 2022, 307, 121841.	6.4	23
53	Effect of pyrolysis upgrading temperature on particulate matter emissions from lignite semi-char combustion. Energy Conversion and Management, 2019, 195, 384-391.	9.2	22
54	Kinetic model study on biomass pyrolysis and CFD application by using pseudo-Bio-CPD model. Fuel, 2021, 293, 120266.	6.4	22

#	Article	IF	CITATIONS
55	Effect of biomass/coal co-firing and air staging on NOx emission and combustion efficiency in a drop tube furnace. Energy Procedia, 2014, 61, 2331-2334.	1.8	21
56	Experimental study of a zero water consumption wet FGD system. Applied Thermal Engineering, 2014, 63, 272-277.	6.0	20
57	Development of wet phase transition agglomerator for multi-pollutant synergistic removal. Applied Thermal Engineering, 2018, 130, 1208-1214.	6.0	20
58	Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: Effects of pressure and atmosphere. Energy, 2022, 238, 121846.	8.8	20
59	Determining the optimum coal concentration in a general tangential-fired furnace with rich-lean burners: From a bench-scale to a pilot-scale study. Applied Thermal Engineering, 2014, 73, 371-379.	6.0	19
60	Sulfate Removal by Kaolin Addition To Address Fouling in a Full-Scale Furnace Burning High-Alkaline Zhundong Coal. Energy & Energy & 2017, 31, 12823-12830.	5.1	18
61	Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Ash Fusion Characteristics of Cofiring Straw and Sawdust. Energy & Experiment Study on Characteristics of Cofiring Straw and Sawdust.	5.1	18
62	Study on reduction characteristics of Fe species in coal ash under SNCR condition. Fuel, 2020, 277, 118231.	6.4	18
63	A New Agro/Forestry Residues Co-Firing Model in a Large Pulverized Coal Furnace: Technical and Economic Assessments. Energies, 2013, 6, 4377-4393.	3.1	17
64	Experimental and kinetics study on SO3 catalytic formation by Fe2O3 in oxy-combustion. Journal of Environmental Management, 2019, 236, 420-427.	7.8	17
65	A kinetic evaluation and optimization study on NOx reduction by reburning under pressurized oxy-combustion. Journal of Environmental Management, 2021, 290, 112690.	7.8	17
66	Pilot Study on In-depth Water Saving and Heat Recovery from Tail Flue Gas in Lignite-fired Power Plant. Energy Procedia, 2014, 61, 2558-2561.	1.8	16
67	Combustion characteristics of a four-wall tangential firing pulverized coal furnace. Applied Thermal Engineering, 2015, 90, 471-477.	6.0	16
68	Study on reduction mechanism of Fe2O3 by NH3 under SNCR condition. Fuel, 2019, 255, 115814.	6.4	16
69	Investigation of Slagging Characteristics on Middle and low temperature heat transfers by Burning High Sodium and Iron coal. Combustion Science and Technology, 2022, 194, 1768-1787.	2.3	16
70	Effect of feedstock water leaching on ignition and PM1.0 emission during biomass combustion in a flat-flame burner reactor. Proceedings of the Combustion Institute, 2019, 37, 2705-2713.	3.9	15
71	Investigation on PM formation from combustion of lignite with high contents of AAEMs (alkali and) Tj ETQq1 193, 2464-2473.	. 0.784314 5.3	rgBT /Overloc 15
72	Oxidation reactivity and kinetic analysis of bituminous coal char from high-temperature pyrolysis: Effect of heating rate and pyrolysis temperature. Thermochimica Acta, 2020, 690, 178660.	2.7	15

#	Article	IF	CITATIONS
73	Thermogravimetric study on the flueâ€eured tobacco leaf pyrolysis and combustion using a distributed activation energy model. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 75-84.	1.5	14
74	Impact of complex reacting atmosphere on ash fusion characteristics and minerals conversion in coal combustion process. Combustion Science and Technology, 2018, 190, 1178-1193.	2.3	14
75	Shock tube evaluation on C2H4 ignition delay differences among N2, Ar, He, CO2 diluent gases. Journal of the Energy Institute, 2020, 93, 1271-1277.	5.3	14
76	Effects of coal types and combustion conditions on carbonaceous aerosols in flue gas and their light absorption properties. Fuel, 2020, 277, 118148.	6.4	14
77	Effect of Ca3(PO4)2 additive on the slagging behavior during the cofiring of high‑sodium coal and iron-rich coal. Fuel Processing Technology, 2021, 222, 106965.	7.2	14
78	Experimental and numerical investigation on the structure characteristics of vortex generators affecting particle agglomeration. Powder Technology, 2020, 362, 805-816.	4.2	13
79	Effects of a combination of biomass addition and atmosphere on combustion characteristics and kinetics of oily sludge. Biomass Conversion and Biorefinery, 2021, 11, 393-407.	4.6	13
80	Experimental investigation on a novel agglomeration device based on charged ultrasonic spray and vortex generators for improving the removal of fine particles. Fuel, 2021, 287, 119549.	6.4	13
81	Condensational growth activated by cooling method for multi-objective treatment of desulfurized flue gas: A full-scale study. Chemical Engineering Journal, 2021, 410, 128296.	12.7	13
82	Numerical and experimental study on co-firing of low volatile coal in a 330ÂMW tangentially fired boiler. Journal of the Energy Institute, 2021, 96, 242-250.	5.3	13
83	Fusion characteristics of capsicum stalk ash. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 679-684.	1.5	12
84	Extraction and quantitation of various potassium salts in straw ash. Environmental Progress and Sustainable Energy, 2015, 34, 333-338.	2.3	12
85	Characteristic of Particulate Matter from Combustion of Zhundong Lignite: A Comparison between Air and Oxy-fuel Atmospheres. Energy & Energy & 2019, 33, 12260-12269.	5.1	12
86	Effects of Wet Flue Gas Desulfurization and Wet Electrostatic Precipitator on Particulate Matter and Sulfur Oxide Emission in Coal-Fired Power Plants. Energy & Samp; Fuels, 2020, 34, 16423-16432.	5.1	12
87	Study of the Layered Structure of Deposit in a Biomass-Fired Boiler (Case Study). Energy & Deposit in a Biom	5.1	11
88	Effect of SO ₂ Addition on PM Formation from Biomass Combustion in an Entrained Flow Reactor. Energy & Energy	5.1	11
89	Evolution of PM2.5 from biomass high-temperature pyrolysis in an entrained flow reactor. Journal of the Energy Institute, 2019, 92, 1548-1556.	5.3	11
90	Investigation on ash fusion temperature and slagging characteristic of Zhundong coal blends, Part 1: The effect of two solid wastes from calcium carbide production. Fuel Processing Technology, 2022, 228, 107138.	7.2	11

#	Article	IF	CITATIONS
91	Fragmentation and mineral transformation behavior during combustion of char produced at elevated pressure. Energy Conversion and Management, 2022, 258, 115538.	9.2	11
92	Effect of Interaction between Sodium and Oxides of Silicon and Aluminum on the Formation of Fine Particulates during Synthetic Char Combustion. Energy & Energy & 2018, 32, 6756-6762.	5.1	10
93	Condensation of KCl(g) under varied temperature gradient. Fuel, 2019, 237, 1141-1150.	6.4	10
94	Evolution of particulate matter in the post-combustion zone of Zhundong lignite. Fuel, 2020, 281, 118780.	6.4	10
95	Decrease of high-carbon-ash landfilling by its Co-firing inside a cement calciner. Journal of Cleaner Production, 2021, 293, 126090.	9.3	10
96	Characteristics of fine particle formation during combustion of Xinjiang high-chlorine-sodium coal. Fuel, 2021, 297, 120772.	6.4	10
97	Fe occurrence form and slagging mechanism on water-wall during high iron Zhundong coal combustion process. Fuel, 2022, 315, 123268.	6.4	10
98	Segmented Kinetic Investigation on Condensed KCl Sulfation in SO2/O2/H2O at 523–1023 K. Energy & Sulfation in SO2/O2/H2O at 523—1023 K. Energy & Sulfation in SO2/O2/H2O at 523–1023 K. Energy & Sulfation in SO2/O2/H2O at 523—1023 K. Energy & Sulfation in SO2/O2/H2O at 523–1023 K. Energy & Sulfation in SO2/O2/H2O at 523—1023 K. Energy & Sulfation in SO2/O2/H2O at 5236 K. Energy & Sulfation in SO2/O2/H2O at 5236 K. Energy & Sulfatio	5.1	9
99	Existence and release of sodium in Zhundong coal: effects of treating temperature and silica additives. International Journal of Oil, Gas and Coal Technology, 2016, 11, 63.	0.2	9
100	Effect of thermal expansion additives on alleviating the ash deposition of high-sodium coal. Journal of Environmental Management, 2020, 269, 110799.	7.8	9
101	C1 \hat{a}^{-1} 4C2 hydrocarbons generation and mutual conversion behavior in coal pyrolysis process. Fuel, 2022, 308, 121929.	6.4	9
102	A typical super-heater tube leakage and high temperature corrosion mechanism investigation in a 260†t/h circulated fluidized boiler. Engineering Failure Analysis, 2020, 109, 104255.	4.0	8
103	Formation of Sulfide Deposits and High-Temperature Corrosion Behavior at Fireside in a Coal-Fired Boiler. Energy & Energ	5.1	8
104	Effect of calcined kaolin on PM0.4 formation from combustion of Zhundong lignite. Fuel, 2022, 319, 123622.	6.4	8
105	A calculation method of biomass slagging rate based on crystallization theory. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 456-463.	1.5	7
106	Combustibility and Cofiring of Coal Gasification Fine Ash with High Carbon Content in a Full-scale Pulverized Coal Furnace. Energy & Samp; Fuels, 2020, 34, 12972-12983.	5.1	7
107	Assessment of the effect of alkali chemistry on post-flame aerosol formation during oxy-combustion of biomass. Fuel, 2022, 311, 122521.	6.4	7
108	Submicron particle formation from co-firing of coal and municipal sewage sludge. Journal of Environmental Management, 2022, 311, 114863.	7.8	7

#	Article	IF	Citations
109	Nano-Scale Soot Particle Formation During the High-Temperature Pyrolysis of Waste Plastics in an Entrained Flow Reactor. Waste and Biomass Valorization, 2019, 10, 3857-3866.	3.4	6
110	Field measurements on particle size distributions and emission characteristics of PM10 in a cement plant of China. Atmospheric Pollution Research, 2019, 10, 1464-1472.	3.8	6
111	Catalytic function of ferric oxide and effect of water on the formation of sulfur trioxide. Journal of Environmental Management, 2020, 264, 110499.	7.8	6
112	Mechanism study of nitric oxide reduction by light gases from typical Chinese coals. Journal of the Energy Institute, 2020, 93, 1697-1704.	5.3	6
113	Effect of coal rank, oxygen level and particle size on oxidation reactivity of typical Chinese coals. Thermochimica Acta, 2021, 696, 178838.	2.7	6
114	Effect of particle system on slag formation and shedding characteristics of high alkali metal coal in full-scale circulating fluidized bed boiler based on Nano-CT. Fuel Processing Technology, 2021, 223, 106995.	7.2	6
115	Removal of Dilute Nitric Oxide using Cobalt Diethylenetriamine Solution under Aerobic Condition. Separation Science and Technology, 2009, 44, 1590-1603.	2.5	5
116	The characteristics of particulate matter and optical properties of Brown carbon in air lean condition related to residential coal combustion. Powder Technology, 2021, 379, 505-514.	4.2	5
117	Effect of ZnS/PbS deposits on high temperature corrosion of waterwall tubes in reducing atmosphere. Fuel Processing Technology, 2021, 216, 106793.	7.2	5
118	Optimization Study on Air Distribution of an Actual Agriculture Up-draft Biomass Gasification Stove. Energy Procedia, 2014, 61, 2335-2338.	1.8	4
119	A Coupling Study of Potassium Sulfation Chemistry and Aerosol Dynamics for a KCl/SO ₂ /O ₂ /H _{>O System. Energy & En}	5.1	4
120	Investigation on the Synergetic Effect of Biomass Co-Firing in the Atmosphere of O ₂ /CO ₂ . Journal of Biobased Materials and Bioenergy, 2014, 8, 481-488.	0.3	4
121	Distribution characteristics of soil AM fungi community in soft sandstone area. Journal of Environmental Management, 2022, 316, 115193.	7.8	4
122	Decision Making on Most Economical Coal for Coal-Fired Power Plants Under Fluctuating Coal Prices. International Journal of Coal Preparation and Utilization, 2011, 31, 273-288.	2.1	3
123	Numerical Simulation on the Effect of Burner Bias Angles on the Performance of a Two-Stage Entrained-Flow Gasifier. ACS Omega, 2022, 7, 6640-6654.	3.5	3
124	Performance characteristics of NO removal by cobalt diethylenetriamine solution. Korean Journal of Chemical Engineering, 2010, 27, 848-853.	2.7	2
125	Kinetic investigation of the SO2 influence on NO reduction processes during methane reburning. Asia-Pacific Journal of Chemical Engineering, 2010, 5, 902-908.	1.5	2
126	Influences of Organic Solvents on the Properties of 1-Butyl-3-methylimidazolium Acetate. Journal of Chemical &	1.9	2

#	Article	IF	CITATIONS
127	Investigation of Zn- and Pb-rich deposits on water-wall tubes in three coal-fired boilers. Fuel Processing Technology, 2021, 211, 106607.	7.2	2
128	Numerical investigation on deposition rate of mechanically mixed ash particles in an entrained flow reactor. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2685.	1.5	2
129	A Mechanism Study on the Decomposition of Sulfate in Zhundong Coal with High Sulfur Content in Coal Ash., 2016,, 101-106.		1
130	Application of H2 and CO2 addition in driver section on shock tube ignition delay measurement. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2362.	1.5	1
131	Simulation and optimization of the particle agglomeration in an aerodynamic agglomerator using a CFD–PBM coupled model. International Journal of Modern Physics C, 2020, 31, 2050121.	1.7	1
132	Modeling Coal Swelling during Pyrolysis at Elevated Pressure by Using a Single Bubble Model: Validation and Application. Combustion Science and Technology, 2023, 195, 1138-1150.	2.3	1
133	A comparative study on the effects of NaOH and CaCl2 additives on dewatering properties and product characteristics of oily scum via hydrothermal treatment. Fuel, 2022, 310, 122398.	6.4	1
134	Effect of purified dust from CaC2 production and bottom ashes/slags on slagging characteristic of Zhundong coal blend. Fuel, 2022, 326, 125028.	6.4	1
135	E303 Experimental Investigation of the Transformation of Pyridinic-nitrogen in Coal during Combustion by Means of Model Compounds. The Proceedings of the International Conference on Power Engineering (ICOPE), 2003, 2003.3, _3-3133-315	0.0	0
136	ICOPE-15-C096 Cellular automata simulation for high temperature oxidation and sulfuration of water wall materials. The Proceedings of the International Conference on Power Engineering (ICOPE), 2015, 2015.12, _ICOPE-15ICOPE-15	0.0	0
137	Thermogravimetric Analysis and Kinetic Calculation on the Combustion Characteristics of Two Typical Shenhua Chars. Advances in Transdisciplinary Engineering, 2021, , .	0.1	0
138	Optimization of Dechlorination Experiment Design Using Lightweight Deep Learning Model. Computational Intelligence and Neuroscience, 2022, 2022, 1-10.	1.7	0
139	The migration and transformation characteristics of particulate matter and trace elements in a cement plant. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 5978-5990.	2.3	0