Osvaldo Contreras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6569631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell, 2022, 29, 281-297.e12.	11.1	71
2	Cardiac fibroblast heterogeneity and dynamics through the lens of single-cell dual â€~omics. Cardiovascular Research, 2022, 118, 1380-1382.	3.8	3
3	Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Frontiers in Physiology, 2021, 12, 673404.	2.8	55
4	Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors—time for new definitions. Skeletal Muscle, 2021, 11, 16.	4.2	60
5	In vitro assessment of anti-fibrotic drug activity does not predict in vivo efficacy in murine models of Duchenne muscular dystrophy. Life Sciences, 2021, 279, 119482.	4.3	13
6	PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells. Cellular Signalling, 2021, 84, 110036.	3.6	24
7	Hic1 deletion unleashes quiescent connective tissue stem cells and impairs skeletal muscle regeneration. Journal of Cell Communication and Signaling, 2020, 14, 131-133.	3.4	7
8	Single-cell revolution unveils the mysteries of the regenerative mammalian digit tip. Developmental Biology, 2020, 461, 107-109.	2.0	3
9	TGF-β-driven downregulation of the Wnt/β-Catenin transcription factor TCF7L2/TCF4 in PDGFRα+ fibroblasts. Journal of Cell Science, 2020, 133, .	2.0	26
10	Adherent muscle connective tissue fibroblasts are phenotypically and biochemically equivalent to stromal fibro/adipogenic progenitors. Matrix Biology Plus, 2019, 2, 100006.	3.5	37
11	The cross-talk between TGF-β and PDGFRα signaling pathways regulates stromal fibro/adipogenic progenitors' fate. Journal of Cell Science, 2019, 132, .	2.0	70
12	Denervation-induced skeletal muscle fibrosis is mediated by CTGF/CCN2 independently of TGF-β. Matrix Biology, 2019, 82, 20-37.	3.6	52
13	First person – Osvaldo Contreras. Journal of Cell Science, 2019, 132, .	2.0	0
14	Nilotinib impairs skeletal myogenesis by increasing myoblast proliferation. Skeletal Muscle, 2018, 8, 5.	4.2	28
15	Expression of CTGF/CCN2 in response to LPA is stimulated by fibrotic extracellular matrix via the integrin/FAK axis. American Journal of Physiology - Cell Physiology, 2018, 314, C415-C427.	4.6	28
16	Fibro/adipogenic progenitors safeguard themselves: a novel mechanism to reduce fibrosis is discovered. Journal of Cell Communication and Signaling, 2017, 11, 77-78.	3.4	5
17	ALS skeletal muscle shows enhanced TGF-Î ² signaling, fibrosis and induction of fibro/adipogenic progenitor markers. PLoS ONE, 2017, 12, e0177649.	2.5	94
18	Connective tissue cells expressing fibro/adipogenic progenitor markers increase under chronic damage: relevance in fibroblast-myofibroblast differentiation and skeletal muscle fibrosis. Cell and Tissue Research, 2016, 364, 647-660.	2.9	117

#	Article	IF	CITATIONS
19	Transforming growth factor typeâ€Î² inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies. BioFactors, 2015, 41, 111-120.	5.4	9
20	RECK-Mediated β1-Integrin Regulation by TGF-β1 Is Critical for Wound Contraction in Mice. PLoS ONE, 2015, 10, e0135005.	2.5	13
21	Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Development (Cambridge), 2013, 140, 3008-3017.	2.5	37
22	Syndecan 4 interacts genetically with Vangl2 to regulate neural tube closure and planar cell polarity. Journal of Cell Science, 2013, 126, e1-e1.	2.0	0