
Yanlin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6569598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Important Role of NO ₃ Radical to Nitrate Formation Aloft in Urban Beijing: Insights from Triple Oxygen Isotopes Measured at the Tower. Environmental Science & Technology, 2022, 56, 6870-6879.	10.0	34
2	Improvement of inorganic aerosol component in PM2.5 by constraining aqueous-phase formation of sulfate in cloud with satellite retrievals: WRF-Chem simulations. Science of the Total Environment, 2022, 804, 150229.	8.0	8
3	Nitrogen isotope characteristics and source apportionment of atmospheric ammonium in urban cities during a haze event in Northern China Plain. Atmospheric Environment, 2022, 269, 118800.	4.1	16
4	Impacts of chemical degradation of levoglucosan on quantifying biomass burning contribution to carbonaceous aerosols: A case study in Northeast China. Science of the Total Environment, 2022, 819, 152007.	8.0	13
5	Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2.5 at Nanjing, China. Environmental Research, 2022, 206, 112554.	7.5	12
6	Regional heterogeneities in the emission of airborne primary sugar compounds and biogenic secondary organic aerosols in the East Asian outflow: evidence for coal combustion as a source of levoglucosan. Atmospheric Chemistry and Physics, 2022, 22, 1373-1393.	4.9	11
7	Atmospheric Chemistry of Oxalate: Insight Into the Role of Relative Humidity and Aerosol Acidity From Highâ€Resolution Observation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
8	Anthropogenic Emission Sources of Sulfate Aerosols in Hangzhou, East China: Insights from Isotope Techniques with Consideration of Fractionation Effects between Gas-to-Particle Transformations. Environmental Science & Technology, 2022, 56, 3905-3914.	10.0	11
9	Decrease of atmospheric black carbon and CO2 concentrations due to COVID-19 lockdown at the Mt. Waliguan WMO/GAW baseline station in China. Environmental Research, 2022, 211, 112984.	7.5	4
10	Development, characterization, and application of an improved online reactive oxygen species analyzer based on the Monitor for AeRosols and Gases in ambient Air (MARGA). Atmospheric Measurement Techniques, 2022, 15, 2623-2633.	3.1	3
11	A diurnal story of Δ17O(\$\$m{NO}_{3}^{-}\$\$) in urban Nanjing and its implication for nitrate aerosol formation. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	15
12	Extremely high abundance of polycyclic aromatic hydrocarbons in aerosols from a typical coal-combustion rural site in China: Size distribution, source identification and cancer risk assessment. Atmospheric Research, 2021, 248, 105192.	4.1	11
13	Source apportionments of atmospheric volatile organic compounds in Nanjing, China during high ozone pollution season. Chemosphere, 2021, 263, 128025.	8.2	57
14	Specific sources of health risks induced by metallic elements in PM2.5 during the wintertime in Beijing, China. Atmospheric Environment, 2021, 246, 118112.	4.1	42
15	Determination of 170 Anomaly in Atmospheric Aerosol Nitrate. Chinese Journal of Analytical Chemistry, 2021, 49, 253-262.	1.7	5
16	Î′15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment. Frontiers of Environmental Science and Engineering, 2021, 15, 126.	6.0	25
17	Substantial decreases of light absorption, concentrations and relative contributions of fossil fuel to light-absorbing carbonaceous aerosols attributed to the COVID-19 lockdown in east China. Environmental Pollution, 2021, 275, 116615.	7.5	15
18	Characteristics and source apportionment of non-polar organic compounds in PM2.5 from the three megacities in Yangtze River Delta region, China. Atmospheric Research, 2021, 252, 105443.	4.1	20

#	Article	IF	CITATIONS
19	The mass-independent oxygen isotopic composition in sulfate aerosol-a useful tool to identify sulfate formation: a review. Atmospheric Research, 2021, 253, 105447.	4.1	7
20	Convergent evidence for the pervasive but limited contribution of biomass burning to atmospheric ammonia in peninsular Southeast Asia. Atmospheric Chemistry and Physics, 2021, 21, 7187-7198.	4.9	8
21	Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer. Atmospheric Measurement Techniques, 2021, 14, 4053-4068.	3.1	4
22	Investigation of the Uncertainties of Simulated Optical Properties of Brown Carbon at Two Asian Sites Using a Modified Bulk Aerosol Optical Scheme of the Community Atmospheric Model Version 5.3. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033942.	3.3	3
23	Contribution of brown carbon to the light absorption and radiative effect of carbonaceous aerosols from biomass burning emissions in Chiang Mai, Thailand. Atmospheric Environment, 2021, 260, 118544.	4.1	15
24	Formation Mechanisms and Source Apportionments of Airborne Nitrate Aerosols at a Himalayan-Tibetan Plateau Site: Insights from Nitrogen and Oxygen Isotopic Compositions. Environmental Science & Technology, 2021, 55, 12261-12271.	10.0	17
25	Nitrate aerosol formation and source assessment in winter at different regions in Northeast China. Atmospheric Environment, 2021, 267, 118767.	4.1	13
26	Measurement report: High contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area. Atmospheric Chemistry and Physics, 2021, 21, 18087-18099.	4.9	14
27	Different formation mechanisms of PAH during wood and coal combustion under different temperatures. Atmospheric Environment, 2020, 222, 117084.	4.1	48
28	Derivatization of Levoglucosan for Compound-Specific δ13C Analysis by Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry. International Journal of Analytical Chemistry, 2020, 2020, 1-11.	1.0	1
29	Coal and biomass burning as major emissions of NOX in Northeast China: Implication from dual isotopes analysis of fine nitrate aerosols. Atmospheric Environment, 2020, 242, 117762.	4.1	34
30	Atmospheric Volatile Organic Compounds (VOCs) in China: a Review. Current Pollution Reports, 2020, 6, 250-263.	6.6	106
31	Development of a Monitoring System for Semicontinuous Measurements of Stable Carbon Isotope Ratios in Atmospheric Carbonaceous Aerosols: Optimized Methods and Application to Field Measurements. Analytical Chemistry, 2020, 92, 14373-14382.	6.5	6
32	Roles of Sulfur Oxidation Pathways in the Variability in Stable Sulfur Isotopic Composition of Sulfate Aerosols at an Urban Site in Beijing, China. Environmental Science and Technology Letters, 2020, 7, 883-888.	8.7	21
33	Seasonal climatology and relationship between AOD and cloud properties inferred from the MODIS over Malawi, Southeast Africa. Atmospheric Pollution Research, 2020, 11, 1933-1952.	3.8	8
34	Isomerization and Degradation of Levoglucosan via the Photo-Fenton Process: Insights from Aqueous-Phase Experiments and Atmospheric Particulate Matter. Environmental Science & Technology, 2020, 54, 11789-11797.	10.0	7
35	Specific sources of health risks caused by size-resolved PM-bound metals in a typical coal-burning city of northern China during the winter haze event. Science of the Total Environment, 2020, 734, 138651.	8.0	45
36	Molecular composition and source apportionment of fine organic aerosols in Northeast China. Atmospheric Environment, 2020, 239, 117722.	4.1	17

#	Article	IF	CITATIONS
37	Characteristics of summertime ambient VOCs and their contributions to O3 and SOA formation in a suburban area of Nanjing, China. Atmospheric Research, 2020, 240, 104923.	4.1	73
38	Insight into the photochemistry of atmospheric oxalate through hourly measurements in the northern suburbs of Nanjing, China. Science of the Total Environment, 2020, 719, 137416.	8.0	7
39	Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia. Environmental Pollution, 2020, 262, 114266.	7.5	18
40	Stable Sulfur Isotopes Revealed a Major Role of Transition-Metal Ion-Catalyzed SO ₂ Oxidation in Haze Episodes. Environmental Science & Technology, 2020, 54, 2626-2634.	10.0	63
41	Online characterization of a large but overlooked human excreta source of ammonia in China's urban atmosphere. Atmospheric Environment, 2020, 230, 117459.	4.1	4
42	Regional haze formation enhanced the atmospheric pollution levels in the Yangtze River Delta region, China: Implications for anthropogenic sources and secondary aerosol formation. Science of the Total Environment, 2020, 728, 138013.	8.0	22
43	Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM _{2.5} events in Nanjing, China. Atmospheric Chemistry and Physics, 2020, 20, 3999-4011.	4.9	46
44	Changes of Emission Sources to Nitrate Aerosols in Beijing After the Clean Air Actions: Evidence From Dual Isotope Compositions. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031998.	3.3	41
45	Fossil and Non-fossil Fuel Sources of Organic and Elemental Carbonaceous Aerosol in Beijing, Shanghai, and Guangzhou: Seasonal Carbon Source Variation. Aerosol and Air Quality Research, 2020, 20, 2495-2506.	2.1	16
46	Size-resolved exposure risk of persistent free radicals (PFRs) in atmospheric aerosols and their potential sources. Atmospheric Chemistry and Physics, 2020, 20, 14407-14417.	4.9	20
47	Urban Haze in the North China Plain: Obervations from NACMON. Bulletin of the American Meteorological Society, 2020, 101, 53-58.	3.3	1
48	Sizeâ€Resolved Characterization of the Chromophores in Atmospheric Particulate Matter From a Typical Coalâ€Burning City in China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10546-10563.	3.3	39
49	Nitrate Isotopic Composition in Precipitation at a Chinese Megacity: Seasonal Variations, Atmospheric Processes, and Implications for Sources. Earth and Space Science, 2019, 6, 2200-2213.	2.6	32
50	Characterization of Secondary Organic Aerosol Tracers over Tianjin, North China during Summer to Autumn. ACS Earth and Space Chemistry, 2019, 3, 2339-2352.	2.7	11
51	High time-resolved measurement of stable carbon isotope composition in water-soluble organic aerosols: method optimization and a case study during winter haze in eastern China. Atmospheric Chemistry and Physics, 2019, 19, 11071-11087.	4.9	20
52	Aerosol chemical component: Simulations with WRF-Chem and comparison with observations in Nanjing. Atmospheric Environment, 2019, 218, 116982.	4.1	26
53	Chemical and optical properties of carbonaceous aerosols in Nanjing, eastern China: regionally transported biomass burning contribution. Atmospheric Chemistry and Physics, 2019, 19, 11213-11233.	4.9	46
54	Determination of Stable Nitrogen and Oxygen Isotope Ratios in Atmospheric Aerosol Nitrates. Chinese Journal of Analytical Chemistry, 2019, 47, 907-915.	1.7	11

#	Article	IF	CITATIONS
55	Nitrogen Speciation and Isotopic Composition of Aerosols Collected at Himalayan Forest (3326 m) Tj ETQq1 12247-12256.	1 0.784314 10.0	rgBT /Overlac 27
56	The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric Chemistry and Physics, 2019, 19, 4211-4233.	4.9	20
57	Characterization of organic aerosols from a Chinese megacity during winter: predominance of fossil fuel combustion. Atmospheric Chemistry and Physics, 2019, 19, 5147-5164.	4.9	42
58	lsotope-based source apportionment of nitrogen-containing aerosols: A case study in an industrial city in China. Atmospheric Environment, 2019, 212, 96-105.	4.1	47
59	Water-Soluble Brown Carbon in Atmospheric Aerosols from Godavari (Nepal), a Regional Representative of South Asia. Environmental Science & Technology, 2019, 53, 3471-3479.	10.0	115
60	Exploring the influence of two inventories on simulated air pollutants during winter over the Yangtze River Delta. Atmospheric Environment, 2019, 206, 170-182.	4.1	21
61	Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning. Atmospheric Chemistry and Physics, 2019, 19, 12221-12234.	4.9	19
62	Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmospheric Chemistry and Physics, 2019, 19, 14637-14656.	4.9	36
63	Temporal variation of oxidative potential of water soluble components of ambient PM2.5 measured by dithiothreitol (DTT) assay. Science of the Total Environment, 2019, 649, 969-978.	8.0	52
64	Study on pollution behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic ions and sulfur isotopes. Atmospheric Research, 2019, 217, 198-207.	4.1	29
65	Investigating the PM2.5 mass concentration growth processes during 2013–2016 in Beijing and Shanghai. Chemosphere, 2019, 221, 452-463.	8.2	50
66	Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review. Environmental Pollution, 2019, 247, 216-228.	7.5	32
67	Assessing Contributions of Agricultural and Nonagricultural Emissions to Atmospheric Ammonia in a Chinese Megacity. Environmental Science & Technology, 2019, 53, 1822-1833.	10.0	130
68	Oxygen isotope anomaly (Δ ¹⁷ O) in atmospheric nitrate: A review. Chinese Science Bulletin, 2019, 64, 649-662.	0.7	4
69	High Loadings of Water-Soluble Oxalic Acid and Related Compounds in PM2.5 Aerosols in Eastern Central India: Influence of Biomass Burning and Photochemical Processing. Aerosol and Air Quality Research, 2019, 9, 2625-2644.	2.1	13
70	Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China. Atmospheric Chemistry and Physics, 2018, 18, 4005-4017.	4.9	49
71	Implications for biomass/coal combustion emissions and secondary formation of carbonaceous aerosols in North China. RSC Advances, 2018, 8, 38108-38117.	3.6	17
72	Enhancements of airborne particulate arsenic over the subtropical free troposphere: impact of southern Asian biomass burning. Atmospheric Chemistry and Physics, 2018, 18, 13865-13879.	4.9	15

#	Article	IF	CITATIONS
73	High Time- and Size-Resolved Measurements of PM and Chemical Composition from Coal Combustion: Implications for the EC Formation Process. Environmental Science & Technology, 2018, 52, 6676-6685. Notogen Isotope fractionation during gas-to-particle conversion of	10.0	55
74	NO _{<i>x</i>} to NO ₃ ^{â^} in the atmosphere – implications for isotope-based NO _{<i>x</i>} source apportionment.	4.9	65
75	Atmospheric Chemistry and Physics, 2018, 18, 11647-11661 First long-term and near real-time measurement of trace elements in China's urban atmosphere: temporal variability, source apportionment and precipitation effect. Atmospheric Chemistry and Physics, 2018, 18, 11793-11812.	4.9	102
76	Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China. Atmospheric Environment, 2018, 187, 230-240.	4.1	80
77	Optimizing isolation protocol of organic carbon and elemental carbon for 14C analysis using fine particulate samples. Atmospheric Environment, 2017, 154, 9-19.	4.1	18
78	Sulfur isotopic fractionation and its implication: Sulfate formation in PM2.5 and coal combustion under different conditions. Atmospheric Research, 2017, 194, 142-149.	4.1	21
79	Characteristics and origins of air pollutants and carbonaceous aerosols during wintertime haze episodes at a rural site in the Yangtze River Delta, China. Atmospheric Pollution Research, 2017, 8, 900-911.	3.8	21
80	Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China. Environmental Pollution, 2017, 231, 654-662.	7.5	72
81	High Abundance of Fluorescent Biological Aerosol Particles in Winter in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 493-502.	2.7	23
82	High Contribution of Nonfossil Sources to Submicrometer Organic Aerosols in Beijing, China. Environmental Science & Technology, 2017, 51, 7842-7852.	10.0	58
83	Assessment of carbonaceous aerosols in Shanghai, China – Part 1: long-term evolution, seasonal variations, and meteorological effects. Atmospheric Chemistry and Physics, 2017, 17, 9945-9964.	4.9	62
84	Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics, 2017, 17, 4229-4249.	4.9	272
85	New insights into the sources and formation of carbonaceous aerosols in China: potential applications of dual-carbon isotopes. National Science Review, 2017, 4, 804-806.	9.5	21
86	Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2016, 9, 23-39.	3.1	110
87	Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China. Environmental Science & Technology, 2016, 50, 6284-6292.	10.0	45
88	The importance of non-fossil sources in carbonaceous aerosols in a megacity of central China during the 2013 winter haze episode: A source apportionment constrained by radiocarbon and organic tracers. Atmospheric Environment, 2016, 144, 60-68.	4.1	29
89	Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers. Atmospheric Chemistry and Physics, 2016, 16, 2985-2996.	4.9	32
90	Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China. Atmospheric Chemistry and Physics, 2016, 16, 6407-6419.	4.9	15

#	Article	IF	CITATIONS
91	Stable carbon isotopic compositions of lowâ€molecularâ€weight dicarboxylic acids, oxocarboxylic acids, <i>α</i> â€dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3707-3717.	3.3	41
92	New directions: Need for better understanding of source and formation process of phthalic acid in aerosols as inferred from aircraft observations over China. Atmospheric Environment, 2016, 140, 147-149.	4.1	19
93	Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Science of the Total Environment, 2016, 572, 1244-1251.	8.0	71
94	Fine particulate matter (PM2.5) in China at a city level. Scientific Reports, 2015, 5, 14884.	3.3	595
95	Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmospheric Chemistry and Physics, 2015, 15, 1299-1312.	4.9	163
96	Accuracy and precision of ¹⁴ C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol. Atmospheric Measurement Techniques, 2015, 8, 3729-3743.	3.1	9
97	Source Apportionment of Elemental Carbon in Beijing, China: Insights from Radiocarbon and Organic Marker Measurements. Environmental Science & Technology, 2015, 49, 8408-8415.	10.0	83
98	Wet deposition of fossil and non-fossil derived particulate carbon: Insights from radiocarbon measurement. Atmospheric Environment, 2015, 115, 257-262.	4.1	15
99	Is it time to tackle PM2.5 air pollutions in China from biomass-burning emissions?. Environmental Pollution, 2015, 202, 217-219.	7.5	65
100	Tightening nonfossil emissions control: A potential opportunity for PM _{2.5} mitigation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1402.	7.1	7
101	Online coupling of pure O2 thermo-optical methods – 14C AMS for source apportionment of carbonaceous aerosols. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 288-293.	1.4	18
102	Development of a method for fast and automatic radiocarbon measurement of aerosol samples by online coupling of an elemental analyzer with a MICADAS AMS. Nuclear Instruments & Methods in Physics Research B, 2015, 361, 163-167.	1.4	48
103	Source Apportionment Using Radiocarbon and Organic Tracers for PM _{2.5} Carbonaceous Aerosols in Guangzhou, South China: Contrasting Local- and Regional-Scale Haze Events. Environmental Science & Technology, 2014, 48, 12002-12011.	10.0	132
104	Micro-scale (μg) radiocarbon analysis of water-soluble organic carbon in aerosol samples. Atmospheric Environment, 2014, 97, 1-5.	4.1	27
105	Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background Site on Hainan Island, South China. Environmental Science & Technology, 2014, 48, 2651-2659.	10.0	87
106	High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 2014, 514, 218-222.	27.8	3,582
107	Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6818-6835.	3.3	82
108	Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 – Part 1: Source apportionment and spatial variability. Atmospheric Chemistry and Physics, 2014, 14, 13551-13570.	4.9	89

#	Article	IF	CITATIONS
109	The Use of Levoglucosan and Radiocarbon for Source Apportionment of PM _{2.5} Carbonaceous Aerosols at a Background Site in East China. Environmental Science & Technology, 2013, 47, 130904083554005.	10.0	42
110	A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments & Methods in Physics Research B, 2013, 294, 315-319.	1.4	163
111	Fossil and Non-Fossil Sources of Different Carbonaceous Fractions in Fine and Coarse Particles by Radiocarbon Measurement. Radiocarbon, 2013, 55, 1510-1520.	1.8	36
112	Intercomparison of ¹⁴ C Analysis of Carbonaceous Aerosols: Exercise 2009. Radiocarbon, 2013, 55, 1496-1509.	1.8	23
113	Microgram-Level Radiocarbon Determination of Carbonaceous Particles in Firn and Ice Samples: Pretreatment and OC/EC Separation. Radiocarbon, 2013, 55, 383-390.	1.8	13
114	Microgram-Level Radiocarbon Determination of Carbonaceous Particles in Firn and Ice Samples: Pretreatment and OC/EC Separation. Radiocarbon, 2013, 55, .	1.8	2
115	On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols. Atmospheric Chemistry and Physics, 2012, 12, 10841-10856.	4.9	122
116	Factors Affecting the Occurrence and Transport of Atmospheric Organochlorines in the China Sea and the Northern Indian and South East Atlantic Oceans. Environmental Science & Technology, 2012, 46, 10012-10021.	10.0	44
117	The spatial distribution and potential sources of polycyclic aromatic hydrocarbons (PAHs) over the Asian marginal seas and the Indian and Atlantic Oceans. Journal of Geophysical Research, 2012, 117, .	3.3	23
118	Occurrence, finger printing and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Chenab River, Pakistan. Journal of Environmental Monitoring, 2011, 13, 3207.	2.1	64
119	Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China. Atmospheric Environment, 2011, 45, 413-419.	4.1	33
120	PBDEs in the atmosphere over the Asian marginal seas, and the Indian and Atlantic oceans. Atmospheric Environment, 2011, 45, 6622-6628.	4.1	31
121	Seasonal variation and sources of low molecular weight organic acids in precipitation in the rural area of Anshun. Science Bulletin, 2011, 56, 1005-1010.	1.7	13