Guijuan Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6569071/publications.pdf

Version: 2024-02-01

758635 752256 30 456 12 20 citations h-index g-index papers 31 31 31 330 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pyrazol-triazole energetic hybrid with high thermal stability and decreased sensitivity: facile synthesis, characterization and promising performance. Chemical Engineering Journal, 2020, 379, 122331.	6.6	58
2	Access to green primary explosives <i>via</i> constructing coordination polymers based on bis-tetrazole oxide and non-lead metals. Green Chemistry, 2019, 21, 1947-1955.	4.6	55
3	From a Novel Energetic Coordination Polymer Precursor to Diverse Mn ₂ O ₃ Nanostructures: Control of Pyrolysis Products Morphology Achieved by Changing the Calcination Atmosphere. Crystal Growth and Design, 2016, 16, 6849-6857.	1.4	30
4	Theoretical investigations on 4,4′,5,5′â€ŧetranitroâ€2,2′â€1H,1′Hâ€2,2′â€biimidazole derivatives nitrogenâ€rich high energy materials. Journal of Physical Organic Chemistry, 2015, 28, 31-39.	as potenti	al 25
5	Preparation and characteristics of $1,2,4$ -oxadiazole-derived energetic ionic salts with nitrogen linkages. New Journal of Chemistry, 2018, 42, 4036-4044.	1.4	25
6	Formation of trinitromethyl functionalized 1,2,4-triazole-based energetic ionic salts and a zwitterionic salt directed by an intermolecular and intramolecular metathesis strategy. New Journal of Chemistry, 2018, 42, 2376-2380.	1.4	24
7	One-Pot Synthesis, Crystal Structure, and Thermal Decomposition Behavior of 1,1ʹ-Diamino-4,4ʹ,5,5ʹ-Tetranitro-2,2ʹ-Biimidazole. Journal of Energetic Materials, 2017, 35, 239-249.	1.0	21
8	Polymorphism in a Nonsensitive-High-Energy Material: Discovery of a New Polymorph and Crystal Structure of 4,4′,5,5′-Tetranitro-1 <i>H</i> ,1′ <i>H</i> -[2,2′-biimidazole]-1,1′-diamine. Crystal Grow Design, 2020, 20, 8005-8014.	vth. <i>a</i> and	20
9	A study on the comprehension of differences in specific kinetic energy of TKX-50 and HMX from the perspective of gas products. Physical Chemistry Chemical Physics, 2019, 21, 6600-6605.	1.3	19
10	5-Amino-1H-1,2,4-triazole-3-carbohydrazide and its applications in the synthesis of energetic salts: a new strategy for constructing the nitrogen-rich cation based on the energetic moiety combination. Dalton Transactions, 2018, 47, 13391-13401.	1.6	18
11	5,6-Di(2-fluoro-2,2-dinitroethoxy)furazano[3,4-b]pyrazine: a high performance melt-cast energetic material and its polycrystalline properties. RSC Advances, 2017, 7, 38844-38852.	1.7	15
12	Thermally Stable Energetic Salts Composed of Heterocyclic Anions and Cations Based on 3,6,7â€Triaminoâ€7 <i>H</i> à€ <i>s</i> â€triazolo[5,1â€ <i>c</i>]â€ <i>s</i> â6triazole: Synthesis and Interm Interaction Study. ChemPlusChem, 2017, 82, 474-482.	nol e.c ular	14
13	Comprehensive Study of the Interaction and Mechanism between Bistetrazole Ionic Salt and Ammonium Nitrate Explosive in Thermal Decomposition. Journal of Physical Chemistry C, 2019, 123, 27286-27294.	1.5	13
14	Stabilization of an intramolecular hydrogen-bond block in an s-triazine insensitive high-energy material. New Journal of Chemistry, 2019, 43, 10675-10679.	1.4	13
15	Accelerated discovery of thermostable high-energy materials with intramolecular donor–acceptor building blocks. Chemical Communications, 2022, 58, 4460-4463.	2.2	13
16	Superior thermally robust energetic materials featuring <i>Z</i> â \in " <i>E</i> isomeric bis(3,4-diamino-1,2,4-triazol-5-yl)-1 <i>H</i> -pyrazole: self-assembly nitrogen-rich tubes and templates with Hofmeister anion capture architecture. CrystEngComm, 2020, 22, 3144-3154.	1.3	12
17	The effects of H ⁺ , NH ₃ OH ⁺ and NH ₄ ⁺ on the thermal decomposition of bistetrazole <i>N</i> -oxide anion. Physical Chemistry Chemical Physics, 2019, 21, 15215-15221.	1.3	9
18	An energetic derivative of $2,2\hat{a}\in^2$, $4,4\hat{a}\in^2$, $6,6\hat{a}\in^2$ -hexanitrostilbene (HNS) and its DMF solvate crystallized from HNS solution with tertiary amine additives. Journal of Energetic Materials, 2019, 37, 90-97.	1.0	8

#	Article	IF	CITATIONS
19	Synthesis of 5,5 \hat{a} e ² -azoxybistetrazole via nitration and de-oxygen rearrangement of triazene. New Journal of Chemistry, 2017, 41, 11512-11516.	1.4	7
20	Synthesis and thermal decomposition performance of 3,6,7-triamino-7H-s-triazolo[5,1-c]-s-triazole. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2517-2529.	2.0	7
21	High Density Energetic Zwitterionic Diazonium 1,2,4â€Triazolate Resulting from an Interesting Bond Cleavage of <i>E</i> àâ€I,2â€Bis(3,4â€diaminoâ€I,2,4â€triazolâ€5â€yl)â€ethane. ChemistrySelect, 2018, 3, 1650	-P6 5 4.	7
22	Heatâ€Resistant Energetic Materials Deriving from Benzopyridotetraazapentalene: Halogen Bonding Effects on the Outcome of Crystal Structure, Thermal Stability and Sensitivity. Propellants, Explosives, Pyrotechnics, 2021, 46, 593-599.	1.0	7
23	Synthesis of 5,6â€Di(2â€fluoroâ€2,2â€dinitro ethoxy)â€2,3â€Dicyanopyrazine by One–step Nucleophilic Substand Its Energetic Properties. ChemistrySelect, 2017, 2, 4567-4571.	itution 0.7	7
24	Synthesis and Characterization of New Meltâ€cast Energetic Salts: Dipotassium and DiaminoguanidiniumN,N′â€Dinitroâ€N,N′â€Bis(3â€dinitromethylâ€furazanateâ€4â€yl)methylenediamine. P Explosives, Pyrotechnics, 2018, 43, 90-95.	r ope llants	, 6
25	Synthesis and Characterization of <i>N</i> ⁵ â€(2â€Fluoroâ€2,2â€dinitroethyl)â€ <i>N</i> ¹ â€methylâ€1Hâ€tetrazoleâ€5â Nitramide Based on Functionalized Amino Group in 5â€Aminoâ€1Hâ€tetrazole. ChemistrySelect, 2018, 3, 6902-6906.	i€amine ar 0.7	nd its
26	Kinetics and mechanism of decomposition induced by solvent evolution in ICM-101 solvates: solvent-evolution-induced low-temperature decomposition. Physical Chemistry Chemical Physics, 2020, 22, 3563-3569.	1.3	5
27	Comparative Study of the Decomposition Mechanism and Kinetics of Biimidazole-Based Energetic Explosives. Journal of Physical Chemistry A, 2020, 124, 3672-3678.	1.1	5
28	Theoretical Screening of Novel 5-picrylamino- 1,2,3,4-tetrazole (PAT) and 5,5′-styphnylamino-1,2,3,4-tetrazole (SAT) Derivatives: A New Molecular Design Strategy of Multi-Nitrogen Energetic Materials by Introducing Intermolecular Hydrogen Bonds and π–π Stacking Interactions. Polycyclic Aromatic Compounds, 2017, 37, 327-344.	1.4	4
29	Synthesis, characterization and properties of a novel energetic ionic salt: dicarbohydrazide bis[3-(5-nitroimino-1,2,4-triazole)]. New Journal of Chemistry, 2019, 43, 6422-6428.	1.4	4
30	The Preparation and Properties of Submicrometerâ€Sized Nâ€Aminoâ€2,4â€dinitroimidazole (ADNI): A Novel and Promising Initiating Explosive for Applications in Short Pulse Initiation Slapper Detonators. ChemistrySelect, 2018, 3, 977-983.	0.7	0