List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6568501/publications.pdf Version: 2024-02-01

HONCHIN SONC

#	Article	IF	CITATIONS
1	Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions. Neuron, 2011, 70, 687-702.	8.1	2,193
2	Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 2016, 165, 1238-1254.	28.9	1,680
3	ADULT NEUROGENESIS IN THE MAMMALIAN CENTRAL NERVOUS SYSTEM. Annual Review of Neuroscience, 2005, 28, 223-250.	10.7	1,642
4	Astroglia induce neurogenesis from adult neural stem cells. Nature, 2002, 417, 39-44.	27.8	1,342
5	Hydroxylation of 5-Methylcytosine by TET1 Promotes Active DNA Demethylation in the Adult Brain. Cell, 2011, 145, 423-434.	28.9	1,196
6	GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 2006, 439, 589-593.	27.8	1,139
7	Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell, 2016, 18, 587-590.	11.1	1,125
8	Neuronal Activity–Induced Gadd45b Promotes Epigenetic DNA Demethylation and Adult Neurogenesis. Science, 2009, 323, 1074-1077.	12.6	846
9	A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain. Neuron, 2007, 54, 559-566.	8.1	813
10	In Vivo Clonal Analysis Reveals Self-Renewing and Multipotent Adult Neural Stem Cell Characteristics. Cell, 2011, 145, 1142-1155.	28.9	749
11	Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 2015, 17, 360-372.	11.1	680
12	Neurogenesis in the Adult Hippocampus. Cold Spring Harbor Perspectives in Biology, 2015, 7, a018812.	5.5	676
13	Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nature Neuroscience, 2014, 17, 215-222.	14.8	663
14	Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell, 2015, 17, 385-395.	11.1	650
15	Neuronal activity modifies the DNA methylation landscape in the adult brain. Nature Neuroscience, 2011, 14, 1345-1351.	14.8	601
16	Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell, 2018, 23, 25-30.	11.1	601
17	Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 2016, 22, 1101-1107.	30.7	581
18	Disrupted-In-Schizophrenia 1 Regulates Integration of Newly Generated Neurons in the Adult Brain. Cell, 2007, 130, 1146-1158.	28.9	576

#	Article	IF	CITATIONS
19	Neurogenesis in the Adult Brain: New Strategies for Central Nervous System Diseases. Annual Review of Pharmacology and Toxicology, 2004, 44, 399-421.	9.4	567
20	Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation. Cell, 2017, 171, 877-889.e17.	28.9	567
21	A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell, 2020, 180, 188-204.e22.	28.9	529
22	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	27.8	471
23	Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 2012, 489, 150-154.	27.8	463
24	Brain organoids: advances, applications and challenges. Development (Cambridge), 2019, 146, .	2.5	385
25	m6A facilitates hippocampus-dependent learning and memory through YTHDF1. Nature, 2018, 563, 249-253.	27.8	354
26	Functions and Dysfunctions of Adult Hippocampal Neurogenesis. Annual Review of Neuroscience, 2014, 37, 243-262.	10.7	344
27	Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 2018, 13, 565-580.	12.0	335
28	Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell, 2020, 27, 937-950.e9.	11.1	314
29	Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neuroscience, 2010, 13, 1338-1344.	14.8	302
30	Epigenetic mechanisms in neurogenesis. Nature Reviews Neuroscience, 2016, 17, 537-549.	10.2	299
31	Epitranscriptomic m6A Regulation of Axon Regeneration in the Adult Mammalian Nervous System. Neuron, 2018, 97, 313-325.e6.	8.1	292
32	DNA methylation presents distinct binding sites for human transcription factors. ELife, 2013, 2, e00726.	6.0	292
33	Adult neural stem cells in the mammalian central nervous system. Cell Research, 2009, 19, 672-682.	12.0	284
34	Identification of Astrocyte-expressed Factors That Modulate Neural Stem/Progenitor Cell Differentiation. Stem Cells and Development, 2006, 15, 407-421.	2.1	273
35	Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell, 2020, 26, 766-781.e9.	11.1	268
36	A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science, 2016, 354, .	12.6	266

#	Article	IF	CITATIONS
37	Modeling a Genetic Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens Junctions and Polarity. Cell Stem Cell, 2014, 15, 79-91.	11.1	238
38	Role of Mitochondrial Metabolism in the Control of Early Lineage Progression and Aging Phenotypes in Adult Hippocampal Neurogenesis. Neuron, 2017, 93, 560-573.e6.	8.1	221
39	Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle, 2011, 10, 2662-2668.	2.6	219
40	Spatial Representations of Granule Cells and Mossy Cells of the Dentate Gyrus. Neuron, 2017, 93, 677-690.e5.	8.1	219
41	Neuronal activity modifies the chromatin accessibility landscape in the adult brain. Nature Neuroscience, 2017, 20, 476-483.	14.8	218
42	Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3709-E3718.	7.1	208
43	Synaptic integration and plasticity of new neurons in the adult hippocampus. Journal of Physiology, 2008, 586, 3759-3765.	2.9	204
44	Using brain organoids to understand Zika virus-induced microcephaly. Development (Cambridge), 2017, 144, 952-957.	2.5	201
45	Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nature Neuroscience, 2010, 13, 541-550.	14.8	200
46	Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development (Cambridge), 2013, 140, 2548-2561.	2.5	198
47	Interplay between DISC1 and CABA Signaling Regulates Neurogenesis in Mice and Risk for Schizophrenia. Cell, 2012, 148, 1051-1064.	28.9	196
48	A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 362-376.	1.5	195
49	Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Current Opinion in Neurobiology, 2005, 15, 514-520.	4.2	192
50	Parvalbumin interneurons mediate neuronal circuitry–neurogenesis coupling in the adult hippocampus. Nature Neuroscience, 2013, 16, 1728-1730.	14.8	191
51	FMRP Modulates Neural Differentiation through m6A-Dependent mRNA Nuclear Export. Cell Reports, 2019, 28, 845-854.e5.	6.4	188
52	Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14157-14162.	7.1	186
53	A Common Embryonic Origin of Stem Cells Drives Developmental and Adult Neurogenesis. Cell, 2019, 177, 654-668.e15.	28.9	186
54	Secreted Frizzled-Related Protein 3 Regulates Activity-Dependent Adult Hippocampal Neurogenesis. Cell Stem Cell, 2013, 12, 215-223.	11.1	173

#	Article	IF	CITATIONS
55	Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair. Nature Neuroscience, 2015, 18, 836-843.	14.8	164
56	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	11.1	163
57	Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nature Neuroscience, 2015, 18, 536-544.	14.8	160
58	Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Research, 2016, 44, 8610-8620.	14.5	155
59	Adult Neurogenesis and Psychiatric Disorders. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019026.	5.5	146
60	Mapping cis-regulatory chromatin contacts in neural cells links neuropsychiatric disorder risk variants to target genes. Nature Genetics, 2019, 51, 1252-1262.	21.4	139
61	An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron, 2017, 94, 337-346.e6.	8.1	130
62	Fragile X mental retardation protein modulates the stability of its m6A-marked messenger RNA targets. Human Molecular Genetics, 2018, 27, 3936-3950.	2.9	129
63	Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery, 2018, 4, 31.	6.7	128
64	How does Zika virus cause microcephaly?. Genes and Development, 2017, 31, 849-861.	5.9	124
65	Molecular landscapes of human hippocampal immature neurons across lifespan. Nature, 2022, 607, 527-533.	27.8	116
66	Robust Hi-C Maps of Enhancer-Promoter Interactions Reveal the Function of Non-coding Genome in Neural Development and Diseases. Molecular Cell, 2020, 79, 521-534.e15.	9.7	110
67	Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9484-9489.	7.1	109
68	The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. Journal of Neuroscience, 2016, 36, 11427-11434.	3.6	109
69	DISC1 Regulates Neurogenesis via Modulating Kinetochore Attachment of Ndel1/Nde1 during Mitosis. Neuron, 2017, 96, 1041-1054.e5.	8.1	109
70	Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Science Translational Medicine, 2016, 8, 328ra29.	12.4	106
71	Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 2016, 19, 690-702.	11.1	103
72	Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus. Stem Cells, 2016, 34, 997-1010.	3.2	103

#	Article	IF	CITATIONS
73	Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018937.	5.5	95
74	The TLX-miR-219 cascade regulates neural stem cell proliferation in neurodevelopment and schizophrenia iPSC model. Nature Communications, 2016, 7, 10965.	12.8	95
75	Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nature Protocols, 2020, 15, 4000-4033.	12.0	89
76	Epigenetic mechanisms of neuroplasticity and the implications for stroke recovery. Experimental Neurology, 2015, 268, 37-45.	4.1	88
77	Applications of Human Brain Organoids to Clinical Problems. Developmental Dynamics, 2019, 248, 53-64.	1.8	88
78	New Neurons in the Adult Mammalian Brain: Synaptogenesis and Functional Integration. Journal of Neuroscience, 2005, 25, 10366-10368.	3.6	87
79	Epigenetic regulation of neurogenesis in the adult mammalian brain. European Journal of Neuroscience, 2011, 33, 1087-1093.	2.6	87
80	Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 2017, 20, 1209-1212.	14.8	85
81	Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nature Communications, 2016, 7, .	12.8	84
82	Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Advanced Drug Delivery Reviews, 2019, 148, 239-251.	13.7	83
83	Lin28A Binds Active Promoters and Recruits Tet1 to Regulate Gene Expression. Molecular Cell, 2016, 61, 153-160.	9.7	74
84	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	4.8	72
85	Modeling psychiatric disorders with patient-derived iPSCs. Current Opinion in Neurobiology, 2016, 36, 118-127.	4.2	72
86	Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell, 2021, 28, 1657-1670.e10.	11.1	72
87	Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Journal of Cell Biology, 2018, 217, 1901-1914.	5.2	69
88	Modeling synaptogenesis in schizophrenia and autism using human iPSC derived neurons. Molecular and Cellular Neurosciences, 2016, 73, 52-62.	2.2	66
89	Radial glial cells in the adult dentate gyrus: what are they and where do they come from?. F1000Research, 2018, 7, 277.	1.6	65
90	Autocrine Mfge8 Signaling Prevents Developmental Exhaustion of the Adult Neural Stem Cell Pool. Cell Stem Cell, 2018, 23, 444-452.e4.	11.1	64

#	Article	IF	CITATIONS
91	Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb. Neuron, 2016, 91, 384-396.	8.1	63
92	Seamless Reconstruction of Intact Adult-Born Neurons by Serial End-Block Imaging Reveals Complex Axonal Guidance and Development in the Adult Hippocampus. Journal of Neuroscience, 2013, 33, 11400-11411.	3.6	62
93	Transplantation of Human Brain Organoids: Revisiting the Science and Ethics of Brain Chimeras. Cell Stem Cell, 2019, 25, 462-472.	11.1	62
94	Nr4a1 suppresses cocaine-induced behavior via epigenetic regulation of homeostatic target genes. Nature Communications, 2020, 11, 504.	12.8	61
95	Early postnatal exposure to isoflurane causes cognitive deficits and disrupts development of newborn hippocampal neurons via activation of the mTOR pathway. PLoS Biology, 2017, 15, e2001246.	5.6	61
96	Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nature Neuroscience, 2014, 17, 1463-1475.	14.8	49
97	Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12486-12491.	7.1	48
98	Zika Virus Infection Induces DNA Damage Response in Human Neural Progenitors That Enhances Viral Replication. Journal of Virology, 2019, 93, .	3.4	45
99	Synaptic dysfunction in complex psychiatric disorders: from genetics to mechanisms. Genome Medicine, 2018, 10, 9.	8.2	44
100	Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory. Neuroepigenetics, 2015, 4, 12-27.	2.8	42
101	Diversity of Neural Precursors in the Adult Mammalian Brain. Cold Spring Harbor Perspectives in Biology, 2016, 8, a018838.	5.5	42
102	Dentate Gyrus Mossy Cells Share a Role in Pattern Separation with Dentate Granule Cells and Proximal CA3 Pyramidal Cells. Journal of Neuroscience, 2019, 39, 9570-9584.	3.6	42
103	Pathophysiology and Mechanisms of Zika Virus Infection in the Nervous System. Annual Review of Neuroscience, 2019, 42, 249-269.	10.7	41
104	Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice. Neuropharmacology, 2015, 88, 171-179.	4.1	39
105	Methylated cis-regulatory elements mediate KLF4-dependent gene transactivation and cell migration. ELife, 2017, 6, .	6.0	39
106	Clinical activity of the <i>EGFR</i> tyrosine kinase inhibitor osimertinib in <i>EGFR</i> -mutant glioblastoma. CNS Oncology, 2019, 8, CNS43.	3.0	38
107	Latent tri-lineage potential of adult hippocampal neural stem cells revealed by Nf1 inactivation. Nature Neuroscience, 2015, 18, 1722-1724.	14.8	35
108	Invited Review: Epigenetics in neurodevelopment. Neuropathology and Applied Neurobiology, 2020, 46, 6-27.	3.2	34

#	Article	IF	CITATIONS
109	Epigenetic regulation of axonal regenerative capacity. Epigenomics, 2016, 8, 1429-1442.	2.1	33
110	The epitranscriptome in stem cell biology and neural development. Neurobiology of Disease, 2020, 146, 105139.	4.4	32
111	In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biology, 2018, 16, e2005211.	5.6	30
112	DNA modifications in the mammalian brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130512.	4.0	29
113	Zika Virus-Induced Neuronal Apoptosis via Increased Mitochondrial Fragmentation. Frontiers in Microbiology, 2020, 11, 598203.	3.5	27
114	Ontogeny of adult neural stem cells in the mammalian brain. Current Topics in Developmental Biology, 2021, 142, 67-98.	2.2	27
115	Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain. Frontiers in Biology, 2014, 9, 66-74.	0.7	26
116	Evaluating Neurodevelopmental Consequences of Perinatal Exposure to Antiretroviral Drugs: Current Challenges and New Approaches. Journal of NeuroImmune Pharmacology, 2021, 16, 113-129.	4.1	26
117	Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Frontiers in Biology, 2015, 10, 262-271.	0.7	25
118	A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation. Molecular Brain, 2015, 8, 52.	2.6	25
119	Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions. Brain Sciences, 2020, 10, 909.	2.3	25
120	Epitranscriptomes in the Adult Mammalian Brain: Dynamic Changes Regulate Behavior. Neuron, 2018, 99, 243-245.	8.1	24
121	Interplay between a Mental Disorder Risk Gene and Developmental Polarity Switch of GABA Action Leads to Excitation-Inhibition Imbalance. Cell Reports, 2019, 28, 1419-1428.e3.	6.4	23
122	Modeling neurological disorders using brain organoids. Seminars in Cell and Developmental Biology, 2021, 111, 4-14.	5.0	23
123	Adult neurogenesis and the dentate gyrus: Predicting function from form. Behavioural Brain Research, 2020, 379, 112346.	2.2	22
124	Structural interaction between DISC1 and ATF4 underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders. Molecular Psychiatry, 2021, 26, 1346-1360.	7.9	22
125	An all-to-all approach to the identification of sequence-specific readers for epigenetic DNA modifications on cytosine. Nature Communications, 2021, 12, 795.	12.8	22
126	Neural stem cells attacked by Zika virus. Cell Research, 2016, 26, 753-754.	12.0	20

#	Article	IF	CITATIONS
127	Novel Treatment for Glioblastoma Delivered by a Radiation Responsive and Radiopaque Hydrogel. ACS Biomaterials Science and Engineering, 2021, 7, 3209-3220.	5.2	20
128	Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways. Human Molecular Genetics, 2017, 26, 2634-2648.	2.9	19
129	Multiplexed Biomarker Panels Discriminate Zika and Dengue Virus Infection in Humans. Molecular and Cellular Proteomics, 2018, 17, 349-356.	3.8	19
130	Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron, 2021, 109, 1150-1167.e6.	8.1	18
131	Flexible encoding of objects and space in single cells of the dentate gyrus. Current Biology, 2022, 32, 1088-1101.e5.	3.9	18
132	DNA damage and repair regulate neuronal gene expression. Cell Research, 2015, 25, 993-994.	12.0	17
133	Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nature Communications, 2021, 12, 1398.	12.8	17
134	Applications of Brain Organoids for Infectious Diseases. Journal of Molecular Biology, 2022, 434, 167243.	4.2	17
135	Modeling traumatic brain injury with human brain organoids. Current Opinion in Biomedical Engineering, 2020, 14, 52-58.	3.4	15
136	Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Current Topics in Developmental Biology, 2021, 142, 477-530.	2.2	15
137	Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127906.	2.2	15
138	High-Affinity Chimeric Antigen Receptor With Cross-Reactive scFv to Clinically Relevant EGFR Oncogenic Isoforms. Frontiers in Oncology, 2021, 11, 664236.	2.8	14
139	What Is the Relationship Between Hippocampal Neurogenesis Across Different Stages of the Lifespan?. Frontiers in Neuroscience, 2022, 16, .	2.8	13
140	Molecular Toggle Switch of Histone Demethylase LSD1. Molecular Cell, 2015, 57, 949-950.	9.7	12
141	PUS7: a targetable epitranscriptomic regulator of glioblastoma growth. Trends in Pharmacological Sciences, 2021, 42, 976-978.	8.7	10
142	3D spatial genome organization in the nervous system: From development and plasticity to disease. Neuron, 2022, 110, 2902-2915.	8.1	10
143	Rheb1 mediates DISC1-dependent regulation of new neuron development in the adult hippocampus. Neurogenesis (Austin, Tex), 2015, 2, e1081715.	1.5	9
144	CYFIP1 Dosages Exhibit Divergent Behavioral Impact via Diametric Regulation of NMDA Receptor Complex Translation in Mouse Models of Psychiatric Disorders. Biological Psychiatry, 2022, 92, 815-826.	1.3	8

#	Article	IF	CITATIONS
145	Microglia modulate neurodevelopment in human neuroimmune organoids. Cell Stem Cell, 2021, 28, 2035-2036.	11.1	8
146	An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. Genomics, Proteomics and Bioinformatics, 2021, 19, 108-122.	6.9	7
147	Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data. Nature Biotechnology, 2022, 40, 741-750.	17.5	7
148	Application of reprogrammed patient cells to investigate the etiology of neurological and psychiatric disorders. Frontiers in Biology, 2012, 7, 179-188.	0.7	6
149	Persistent Cyfip1 Expression Is Required to Maintain the Adult Subventricular Zone Neurogenic Niche. Journal of Neuroscience, 2020, 40, 2015-2024.	3.6	6
150	Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. Advances in Neurobiology, 2020, 25, 237-257.	1.8	6
151	Setting the clock of neural progenitor cells during mammalian corticogenesis. Seminars in Cell and Developmental Biology, 2023, 142, 43-53.	5.0	6
152	Seeking a Roadmap toward Neuroepigenetics. Neuron, 2015, 86, 12-15.	8.1	5
153	What Makes Organoids Good Models of Human Neurogenesis?. Frontiers in Neuroscience, 2022, 16, 872794.	2.8	5
154	A diametric mode of neuronal circuitry-neurogenesis coupling in the adult hippocampus via parvalbumin interneurons. Neurogenesis (Austin, Tex), 2014, 1, e29949.	1.5	3
155	Loss of chromatin modulator Dpy30 compromises proliferation and differentiation of postnatal neural stem cells. Journal of Molecular Cell Biology, 2020, 12, 2-3.	3.3	3
156	Seq-ing out cell types across the isocortex and hippocampal formation. Cell, 2021, 184, 3083-3085.	28.9	3
157	Experience Matters: Enrichment Remodels Synaptic Inputs to Adult-Born Neurons. Neuron, 2015, 85, 659-661.	8.1	2
158	A previously undetected pathology of Zika virus infection. Nature Medicine, 2018, 24, 258-259.	30.7	2
159	Reprogram to pluripotency: a new logic and a chemical cocktail. National Science Review, 2014, 1, 6-7.	9.5	1
160	Coupling Neurogenesis to Circuit Formation. Cell, 2018, 173, 288-290.	28.9	1
161	m 6 A facilitates hippocampusâ€dependent learning and memory through Ythdf1. FASEB Journal, 2018, 32, 787.6.	0.5	1
162	TMOD-13. MODELING THE GENETIC, TRANSCRIPTOMIC, AND CELLULAR HETEROGENEITY OF GLIOBLASTOMA USING TUMOR ORGANOIDS. Neuro-Oncology, 2019, 21, vi265-vi265.	1.2	0

#	Article	IF	CITATIONS
163	TMOD-26. MODELING GLIOBLASTOMA BY IMPLANTATION OF INTACT PATIENT-DERIVED ORGANOIDS INTO RODENT BRAINS. Neuro-Oncology, 2019, 21, vi268-vi268.	1.2	Ο
164	TMOD-25. GLIOBLASTOMA ORGANOIDS: A MODEL SYSTEM FOR PATIENT-SPECIFIC THERAPEUTIC TESTING. Neuro-Oncology, 2019, 21, vi268-vi268.	1.2	0
165	Abstract 2203: Identifying the transcriptomic signatures of mutational heterogeneity in GBM using single cell genomics. , 2021, , .		Ο
166	Stem cells take the stairs. Journal of Biological Chemistry, 2017, 292, 19605-19606.	3.4	0
167	An Integrated System Approach Identified the Human Proteasome as a Conserved Critical Machinery for ZIKV and DENV Replication. FASEB Journal, 2018, 32, 669.3.	0.5	0