
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/65685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature and spatial connectivity drive patterns in freshwater macroinvertebrate diversity across the Arctic. Freshwater Biology, 2022, 67, 159-175.	1.2	19
2	Effects of pollution-induced changes in oxygen conditions scaling up from individuals to ecosystems in a tropical river network. Science of the Total Environment, 2022, 814, 151958.	3.9	5
3	Anthropogenically impacted lake catchments in Denmark reveal low microplastic pollution. Environmental Science and Pollution Research, 2022, 29, 47726-47739.	2.7	8
4	Multiâ€ŧaxa colonisation along the foreland of a vanishing equatorial glacier. Ecography, 2021, 44, 1010-1021.	2.1	24
5	Aquatic biota responses to temperature in a high Andean geothermal stream. Freshwater Biology, 2021, 66, 1889-1900.	1.2	4
6	A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecological Indicators, 2021, 126, 107609.	2.6	44
7	Functional Feeding Groups of Macrofauna and Detritus Decomposition along a Gradient of Glacial Meltwater Influence in Tropical High-Andean Streams. Water (Switzerland), 2021, 13, 3303.	1.2	3
8	Macroinvertebrate assemblages in mountain tributaries of glacial-fed and rain-fed rivers in eastern Nepal. Nepal Journal of Environmental Science, 2021, 9, 45-55.	0.3	1
9	Macroinvertebrate communities along the main stem and tributaries of a pre-Alpine river: composition responds to altitude, richness does not. Limnologica, 2020, 84, 125816.	0.7	5
10	Insects in highâ€elevation streams: Life in extreme environments imperiled by climate change. Global Change Biology, 2020, 26, 6667-6684.	4.2	57
11	Specialized meltwater biodiversity persists despite widespread deglaciation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12208-12214.	3.3	37
12	History of limnology in Ecuador: a foundation for a growing field in the country. Hydrobiologia, 2020, 847, 4191-4206.	1.0	7
13	Functional structure and diversity of invertebrate communities in a glacierised catchment of the tropical Andes. Freshwater Biology, 2020, 65, 1348-1362.	1.2	11
14	The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Frontiers in Ecology and the Environment, 2020, 18, 211-218.	1.9	45
15	Spatial and temporal variation of benthic macroinvertebrate assemblages during the glacial melt season in an Italian glacier-fed stream. Hydrobiologia, 2019, 827, 123-139.	1.0	17
16	Environmental and spatial filters of zooplankton metacommunities in shallow pools in highâ $\in e$ levation peatlands in the tropical Andes. Freshwater Biology, 2018, 63, 432-442.	1.2	4
17	Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth-Science Reviews, 2018, 176, 195-213.	4.0	203
18	Glacial-fed and páramo lake ecosystems in the tropical high Andes. Hydrobiologia, 2018, 813, 19-32.	1.0	16

#	Article	IF	CITATIONS
19	Ecological effects of introduced rainbow trout (Oncorhynchus mykiss) in pristine Ecuadorian high Andean lakes. Fundamental and Applied Limnology, 2018, 191, 323-337.	0.4	7
20	Ecosystem structure and function of afrotropical streams with contrasting land use. Freshwater Biology, 2018, 63, 1498-1513.	1.2	26
21	Chironomidae (Insecta: Diptera) of Ecuadorian Highaltitude Streams: A Survey and Illustrated Key. Florida Entomologist, 2018, 101, 663.	0.2	4
22	Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biological Reviews, 2017, 92, 2024-2045.	4.7	118
23	Toward mountains without permanent snow and ice. Earth's Future, 2017, 5, 418-435.	2.4	324
24	A long-term improvement in Danish stream fauna: Analyses of temporal dynamics and community alignment of a biotic index. Ecological Indicators, 2017, 81, 47-53.	2.6	4
25	Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9770-9778.	3.3	381
26	Fish on the roof of the world: densities, habitats and trophic position of stone loaches (Triplophysa) in Tibetan streams. Marine and Freshwater Research, 2017, 68, 53.	0.7	4
27	Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS ONE, 2017, 12, e0175814.	1.1	80
28	Ecology of High Altitude Waters. , 2017, , .		32
29	Are latitudinal richness gradients in European freshwater species only structured according to dispersal and time?. Ecography, 2016, 39, 1247-1249.	2.1	5
30	Direct and indirect effects of glaciers on aquatic biodiversity in high Andean peatlands. Global Change Biology, 2016, 22, 3196-3205.	4.2	20
31	Ecological responses to experimental glacier-runoff reduction in alpine rivers. Nature Communications, 2016, 7, 12025.	5.8	56
32	The altitudinal limit of <i>Leptohyphes</i> Eaton, 1882 and <i>Lachlania</i> Hagen, 1868 (Ephemeroptera:) Tj ETG Insects, 2016, 37, 69-86.	Qq0 0 0 rg 0.6	gBT /Overlock 10
33	A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution, 2015, 5, 1235-1248.	0.8	167
34	Diversity and composition of macroinvertebrate assemblages in high-altitude Tibetan streams. Inland Waters, 2015, 5, 263-274.	1.1	10
35	Temporal scaling of high flow effects on benthic fauna: Insights from equatorial glacierâ€fed streams. Limnology and Oceanography, 2015, 60, 1836-1847.	1.6	10
36	Altitudinal distribution limits of aquatic macroinvertebrates: an experimental test in a tropical alpine stream. Ecological Entomology, 2015, 40, 629-638.	1.1	27

#	Article	IF	CITATIONS
37	The legacy of pesticide pollution: An overlooked factor in current risk assessments of freshwater systems. Water Research, 2015, 84, 25-32.	5.3	130
38	Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change. PLoS ONE, 2015, 10, e0136793.	1.1	66
39	Temporal variability in discharge and benthic macroinvertebrate assemblages in a tropical glacier-fed stream. Freshwater Science, 2014, 33, 32-45.	0.9	25
40	Relationships between stream macroinvertebrate communities and new floodâ€based indices of glacial influence. Freshwater Biology, 2014, 59, 1916-1925.	1.2	27
41	Runoff and the longitudinal distribution of macroinvertebrates in a glacierâ€ f ed stream: implications for the effects of global warming. Freshwater Biology, 2014, 59, 2038-2050.	1.2	48
42	Biodiversity Patterns and Continental Insularity in the Tropical High Andes. Arctic, Antarctic, and Alpine Research, 2014, 46, 811-828.	0.4	66
43	Egg development of <scp>P</scp> lecoptera, <scp>E</scp> phemeroptera and <scp>O</scp> donata along latitudinal gradients. Ecological Entomology, 2014, 39, 177-185.	1.1	14
44	Temperature increase and respiratory performance of macroinvertebrates with different tolerances to organic pollution. Limnologica, 2013, 43, 510-515.	0.7	17
45	Glacial flood pulse effects on benthic fauna in equatorial high-Andean streams. Hydrological Processes, 2013, 28, n/a-n/a.	1.1	14
46	Aquatic community structure across an Andesâ€ŧoâ€Amazon fluvial gradient. Journal of Biogeography, 2013, 40, 1715-1728.	1.4	66
47	Sacred fish: on beliefs, fieldwork, and freshwater food webs in Tibet. Frontiers in Ecology and the Environment, 2013, 11, 50-51.	1.9	7
48	Technical Note: Glacial influence in tropical mountain hydrosystems evidenced by the diurnal cycle in water levels. Hydrology and Earth System Sciences, 2013, 17, 4803-4816.	1.9	28
49	Biodiversity under threat in glacier-fed riverÂsystems. Nature Climate Change, 2012, 2, 361-364.	8.1	265
50	Testing the stressâ€gradient hypothesis with aquatic detritivorous invertebrates: insights for biodiversityâ€ecosystem functioning research. Journal of Animal Ecology, 2012, 81, 1259-1267.	1.3	61
51	Chironomid (Diptera) distribution and diversity in Tibetan streams with different glacial influence. Insect Conservation and Diversity, 2012, 5, 319-326.	1.4	23
52	Environmental harshness and global richness patterns in glacierâ€fed streams. Global Ecology and Biogeography, 2012, 21, 647-656.	2.7	72
53	The influence of environmental factors and dredging on chironomid larval diversity in urban drainage systems in polders strongly influenced by seepage from large rivers. Journal of the North American Benthological Society, 2011, 30, 1074-1092.	3.0	6
54	Predicting richness effects on ecosystem function in natural communities: insights from high-elevation streams. Ecology, 2011, 92, 733-743.	1.5	47

#	Article	IF	CITATIONS
55	Spatial variability in macroinvertebrate assemblages along and among neighbouring equatorial glacier-fed streams. Freshwater Biology, 2011, 56, 2226-2244.	1.2	35
56	Low species richness of non-biting midges (Diptera: Chironomidae) in Neotropical artificial urban water bodies. Urban Ecosystems, 2011, 14, 457-468.	1.1	5
57	Longitudinal zonation of macroinvertebrates in an Ecuadorian glacierâ€fed stream: do tropical glacial systems fit the temperate model?. Freshwater Biology, 2010, 55, 1234-1248.	1.2	50
58	Classical alpine stream types on the equator: are they different?. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2009, 30, 1245-1250.	0.1	1
59	Bolivian Altiplano streams with low richness of macroinvertebrates and large diel fluctuations in temperature and dissolved oxygen. Aquatic Ecology, 2008, 42, 643-656.	0.7	48
60	Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates. Oecologia, 2008, 154, 795-807.	0.9	101
61	Are altitudinal limits of equatorial stream insects reflected in their respiratory performance?. Freshwater Biology, 2008, 53, 2295-2308.	1.2	39
62	Macroinvertebrates: Composition, Life Histories and Production. , 2008, , 65-105.		45
63	Tropical High-Altitude Streams. , 2008, , 219-VIII.		60
64	Temporally variable macroinvertebrate–stone relationships in streams. Hydrobiologia, 2005, 544, 201-214.	1.0	21
65	Respiration Rate of Stream Insects Measured in situ Along a Large Altitude Range. Hydrobiologia, 2005, 549, 79-98.	1.0	32
66	Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology, 2004, 49, 1293-1305.	1.2	96
67	Are macroinvertebrates in high altitude streams affected by oxygen deficiency?. Freshwater Biology, 2003, 48, 2025-2032.	1.2	81
68	Effects of deforestation on macroinvertebrate diversity and assemblage structure in Ecuadorian Amazon streams. Archiv Für Hydrobiologie, 2003, 158, 317-342.	1.1	70
69	Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv Für Hydrobiologie, 2003, 158, 145-167.	1.1	65
70	Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants. Freshwater Biology, 2002, 47, 1475-1487.	1.2	11
71	Macroinvertebrate drift in Amazon streams in relation to riparian forest cover and fish fauna. Fundamental and Applied Limnology, 2002, 155, 177-197.	0.4	12
72	Aquatic macrophytes in cool aseasonal and seasonal streams: a comparison between Ecuadorian highland and Danish lowland streams. Aquatic Botany, 2001, 71, 281-295.	0.8	24

DEAN JACOBSEN

#	Article	IF	CITATIONS
73	Gill size of trichopteran larvae and oxygen supply in streams along a 4000-m gradient of altitude. Journal of the North American Benthological Society, 2000, 19, 329-343.	3.0	27
74	Variation in growth of the detritivore-shredder Sericostoma personatum (Trichoptera). Freshwater Biology, 1999, 42, 625-635.	1.2	63
75	The macroinvertebrate fauna of Ecuadorian highland streams in the wet and dry season. Fundamental and Applied Limnology, 1998, 142, 53-70.	0.4	77
76	The effect of organic pollution on the macroinvertebrate fauna of Ecuadorian highland streams. Fundamental and Applied Limnology, 1998, 143, 179-195.	0.4	53
77	Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology, 1997, 38, 247-261.	1.2	231
78	Food preference of the trichopteran larva Anabolia nervosa from two streams with different food availability. Hydrobiologia, 1995, 308, 139-144.	1.0	12
79	Variability of invertebrate herbivory on the submerged macrophyte Potamogeton perfoliatus. Freshwater Biology, 1995, 34, 357-365.	1.2	16
80	Food preference of the caddis larva <i>Anabolia nervosa</i> feeding on aquatic macrophytes. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1994, 25, 2478-2481.	0.1	3
81	Growth and energetics of a trichopteran larva feeding on fresh submerged and terrestrial plants. Oecologia, 1994, 97, 412-418.	0.9	27
82	The effect of brown trout (Salmo Trutta L.) on stream invertebrate drift, with special reference to Gammarus pulex L Hydrobiologia, 1994, 294, 105-110.	1.0	43
83	Invertebrate herbivory on the submerged macrophyte Potamogeton perfoliatus in a Danish stream. Freshwater Biology, 1994, 31, 43-52.	1.2	34
84	Feeding plasticity of two detritivore-shredders. Freshwater Biology, 1994, 32, 133-142.	1.2	158
85	Herbivory and Resulting Plant Damage. Oikos, 1994, 69, 545.	1.2	38
86	Trichopteran Larvae as Consumers of Submerged Angiosperms in Running Waters. Oikos, 1993, 67, 379.	1.2	8
87	Herbivory of invertebrates on submerged macrophytes from Danish freshwaters. Freshwater Biology, 1992, 28, 301-308.	1.2	51
88	Growth and feeding of 0+ Brown Trout (Salmo trutta L.) introduced to two small Danish streams. Archiv Für Hydrobiologie, 1992, 125, 339-346.	1.1	9
89	Excretion from the benthic macrofauna covers little of spring nutrient uptake in a small Danish forest stream. Inland Waters, 0, , 1-8.	1.1	0
90	Small Hydropower—Small Ecological Footprint? A Multi-Annual Environmental Impact Analysis Using Aquatic Macroinvertebrates as Bioindicators. Part 1: Effects on Community Structure. Frontiers in Environmental Science, 0, 10, .	1.5	3