
George D Weiblen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6568482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution of biomass dynamics in relation to tree size in forests across the world. New Phytologist, 2022, 234, 1664-1677.	3.5	24
2	Predicting distributions of <i>Wolbachia</i> strains through host ecological contact—Who's manipulating whom?. Ecology and Evolution, 2022, 12, e8826.	0.8	1
3	Molecular Systematics, Species Concepts, and Myrmecophytism in <i>Cecropia</i> (Cecropieae:) Tj ETQq1 1 0.7	84314 rgE 0.2	T /Overlock
4	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
5	A new <i>Cannabis</i> genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytologist, 2021, 230, 1665-1679.	3.5	87
6	Interâ€specific aggression generates ant mosaics in canopies of primary tropical rainforest. Oikos, 2021, 130, 1087-1099.	1.2	9
7	Spatial scaling of plant and bird diversity from 50 to 10,000Âha in a lowland tropical rainforest. Oecologia, 2021, 196, 101-113.	0.9	1
8	Common spatial patterns of trees in various tropical forests: Small trees are associated with increased diversity at small spatial scales. Ecology and Evolution, 2021, 11, 8085-8095.	0.8	4
9	Language and ethnobiological skills decline precipitously in Papua New Guinea, the world's most linguistically diverse nation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
10	Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nature Communications, 2021, 12, 3137.	5.8	28
11	Host specificity and interaction networks of insects feeding on seeds and fruits in tropical rainforests. Oikos, 2021, 130, 1462-1476.	1.2	10
12	New Species Assemblages Disrupt Obligatory Mutualisms Between Figs and Their Pollinators. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	5
13	New Guinea has the world's richest island flora. Nature, 2020, 584, 579-583.	13.7	108
14	Validating a predictive model of cannabinoid inheritance with feral, clinical, and industrial <i>Cannabis sativa</i> . American Journal of Botany, 2020, 107, 1423-1432.	0.8	17
15	Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient. Ecology Letters, 2020, 23, 1499-1510.	3.0	12
16	Evolution and classification of figs (<i>Ficus</i> , Moraceae) and their close relatives (Castilleae) united by involucral bracts. Botanical Journal of the Linnean Society, 2020, 193, 316-339.	0.8	10
17	Contrasting patterns of fig wasp communities along Mt. Wilhelm, Papua New Guinea. Biotropica, 2020, 52, 323-334.	0.8	4
18	Compound Specific Trends of Chemical Defences in Ficus Along an Elevational Gradient Reflect a Complex Selective Landscape. Journal of Chemical Ecology, 2020, 46, 442-454.	0.9	11

#	Article	IF	CITATIONS
19	Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecology Letters, 2019, 22, 245-255.	3.0	92
20	High specialization and limited structural change in plantâ€herbivore networks along a successional chronosequence in tropical montane forest. Ecography, 2019, 42, 162-172.	2.1	19
21	Faster speciation of figâ€wasps than their host figs leads to decoupled speciation dynamics: Snapshots across the speciation continuum. Molecular Ecology, 2019, 28, 3958-3976.	2.0	14
22	Quantitative assessment of plant-arthropod interactions in forest canopies: A plot-based approach. PLoS ONE, 2019, 14, e0222119.	1.1	20
23	The insectâ€focused classification of fruit syndromes in tropical rain forests: An interâ€continental comparison. Biotropica, 2019, 51, 39-49.	0.8	2
24	Patterns of nitrogenâ€fixing tree abundance in forests across Asia and America. Journal of Ecology, 2019, 107, 2598-2610.	1.9	29
25	Determinants of Piper (Piperaceae) climber composition in a lowland tropical rainforest in New Guinea. Folia Geobotanica, 2019, 54, 227-238.	0.4	0
26	Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and figâ€wasp mutualism. Journal of Ecology, 2018, 106, 2256-2273.	1.9	37
27	A crossâ€continental comparison of assemblages of seed―and fruitâ€feeding insects in tropical rain forests: Faunal composition and rates of attack. Journal of Biogeography, 2018, 45, 1395-1407.	1.4	12
28	Tropical forest dynamics in unstable terrain: a case study from New Guinea. Journal of Tropical Ecology, 2018, 34, 157-175.	0.5	12
29	Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in <i>Ficus</i> . Ecology Letters, 2018, 21, 83-92.	3.0	80
30	Spatial scale changes the relationship between beta diversity, species richness and latitude. Royal Society Open Science, 2018, 5, 181168.	1.1	29
31	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	6
32	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	9
33	Global importance of largeâ€diameter trees. Global Ecology and Biogeography, 2018, 27, 849-864.	2.7	330
34	Phylogenetic trophic specialization: a robust comparison of herbivorous guilds. Oecologia, 2017, 185, 551-559.	0.9	21
35	Variably hungry caterpillars: predictive models and foliar chemistry suggest how to eat a rainforest. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171803.	1.2	25
36	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	6.0	222

3

#	Article	IF	CITATIONS
37	Spatial patterns of tree species distribution in New Guinea primary and secondary lowland rain forest. Journal of Vegetation Science, 2016, 27, 328-339.	1.1	45
38	Fruit sizes and the structure of frugivorous communities in a New Guinea lowland rainforest. Austral Ecology, 2016, 41, 228-237.	0.7	12
39	Phylogeny of the Cecropieae (Urticaceae) and the Evolution of an Ant-Plant Mutualism. Systematic Botany, 2016, 41, 56-66.	0.2	22
40	Gene duplication and divergence affecting drug content in <i>Cannabis sativa</i> . New Phytologist, 2015, 208, 1241-1250.	3.5	146
41	Forest carbon in lowland <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea: Local variation and the importance of small trees. Austral Ecology, 2015, 40, 151-159.	0.7	36
42	DNA Barcodes of Lepidoptera Reared from Yawan, Papua New Guinea. Proceedings of the Entomological Society of Washington, 2015, 117, 247.	0.0	4
43	The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 442-447.	3.3	454
44	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
45	Trophic phylogenetics: evolutionary influences on body size, feeding, and species associations in grassland arthropods. Ecology, 2015, 96, 998-1009.	1.5	20
46	Frugivorous weevils are too rare to cause Janzen–Connell effects in New Guinea lowland rain forest. Journal of Tropical Ecology, 2014, 30, 521-535.	0.5	16
47	Crossâ€continental comparisons of butterfly assemblages in tropical rainforests: implications for biological monitoring. Insect Conservation and Diversity, 2013, 6, 223-233.	1.4	36
48	Phylogenetic Signal Variation in the Genomes of Medicago (Fabaceae). Systematic Biology, 2013, 62, 424-438.	2.7	51
49	Estimating global arthropod species richness: refining probabilistic models using probability bounds analysis. Oecologia, 2013, 171, 357-365.	0.9	51
50	DNA Barcodes of Caterpillars (Lepidoptera) from Papua New Guinea. Proceedings of the Entomological Society of Washington, 2013, 115, 107-109.	0.0	20
51	Low host specificity in species-rich assemblages of xylem- and phloem-feeding herbivores (Auchenorrhyncha) in a New Guinea lowland rain forest. Journal of Tropical Ecology, 2013, 29, 467-476.	0.5	6
52	An Extreme Case of Plant–Insect Codiversification: Figs and Fig-Pollinating Wasps. Systematic Biology, 2012, 61, 1029-1047.	2.7	319
53	Synthesizing phylogenetic knowledge for ecological research. Ecology, 2012, 93, S4-S13.	1.5	52
54	Predicting tropical insect herbivore abundance from host plant traits and phylogeny. Ecology, 2012, 93, S211.	1.5	90

#	Article	IF	CITATIONS
55	Insects on Plants: Explaining the Paradox of Low Diversity within Specialist Herbivore Guilds. American Naturalist, 2012, 179, 351-362.	1.0	47
56	Why are there more arboreal ant species in primary than in secondary tropical forests?. Journal of Animal Ecology, 2012, 81, 1103-1112.	1.3	113
57	POLLINATOR-MEDIATED REPRODUCTIVE ISOLATION AMONG DIOECIOUS FIG SPECIES (<i>FICUS</i> ,) Tj ETQq1	1 0.78431 1.1	.4 rgBT /Over
58	Pollinator sharing in dioecious figs (Ficus: Moraceae). Biological Journal of the Linnean Society, 2011, 103, 546-558.	0.7	39
59	Development and characterization of microsatellite loci in dioecious figs (<i>Ficus</i> , Moraceae). American Journal of Botany, 2011, 98, e25-7.	0.8	14
60	Nutritional Dimorphism in New Guinea Dioecious Figs. Biotropica, 2010, 42, 656-663.	0.8	12
61	Guildâ€specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. Journal of Animal Ecology, 2010, 79, 1193-1203.	1.3	261
62	Five NewFicusSpecies (Moraceae) from Melanesia. Harvard Papers in Botany, 2010, 15, 1-10.	0.1	4
63	Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5041-5046.	3.3	100
64	Molecular Divergence in Allopatric <i>Ceratosolen</i> (Agaonidae) Pollinators of Geographically Widespread <i>Ficus</i> (Moraceae) Species. Annals of the Entomological Society of America, 2010, 103, 1025-1037.	1.3	30
65	Quantifying Uncertainty in Estimation of Tropical Arthropod Species Richness. American Naturalist, 2010, 176, 90-95.	1.0	199
66	Decomposition in tropical forests: a panâ€tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 2009, 97, 801-811.	1.9	256
67	Molecular dating and biogeography of fig-pollinating wasps. Molecular Phylogenetics and Evolution, 2009, 52, 715-726.	1.2	47
68	Morphological Evolution in the Mulberry Family (Moraceae). Systematic Botany, 2009, 34, 530-552.	0.2	98
69	Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. Journal of Experimental Botany, 2009, 60, 3715-3726.	2.4	130
70	Phylogeny, biogeography, and ecology of Ficus section Malvanthera (Moraceae). Molecular Phylogenetics and Evolution, 2008, 48, 12-22.	1.2	50
71	Low beta diversity of herbivorous insects in tropical forests. Nature, 2007, 448, 692-695.	13.7	227
72	DNA barcoding confirms polyphagy in a generalist moth,Homona mermerodes(Lepidoptera:) Tj ETQq0 0 0 rgBT /	Overlock 1	.0]f 50 62 T

5

#	Article	IF	CITATIONS
73	PHYLOGENETIC DISPERSION OF HOST USE IN A TROPICAL INSECT HERBIVORE COMMUNITY. Ecology, 2006, 87, S62-S75.	1.5	171
74	Genetic Variation in Hemp and Marijuana (Cannabis sativa L.) According to Amplified Fragment Length Polymorphisms*. Journal of Forensic Sciences, 2006, 51, 371-375.	0.9	91
75	Why Are There So Many Species of Herbivorous Insects in Tropical Rainforests?. Science, 2006, 313, 1115-1118.	6.0	469
76	Biogeography and divergence times in the mulberry family (Moraceae). Molecular Phylogenetics and Evolution, 2005, 37, 402-416.	1.2	169
77	An altitudinal comparison of caterpillar (Lepidoptera) assemblages on <i>Ficus</i> trees in Papua New Guinea. Journal of Biogeography, 2005, 32, 1303-1314.	1.4	48
78	60 million years of co-divergence in the fig–wasp symbiosis. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 2593-2599.	1.2	201
79	On the origin of the fig: phylogenetic relationships of Moraceae from <i>ndh</i> F sequences. American Journal of Botany, 2004, 91, 767-777.	0.8	145
80	No tree an island: the plant-caterpillar food web of a secondary rain forest in New Guinea. Ecology Letters, 2004, 7, 1090-1100.	3.0	64
81	Conservation and biological monitoring of tropical forests: the role of parataxonomists. Journal of Applied Ecology, 2004, 41, 163-174.	1.9	80
82	Oviposition strategies, host coercion and the stable exploitation of figs by wasps. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1185-1195.	1.2	39
83	Correlated Evolution in Fig Pollination. Systematic Biology, 2004, 53, 128-139.	2.7	96
84	Colonising aliens: caterpillars (Lepidoptera) feeding on Piper aduncum and P. umbellatum in rainforests of Papua New Guinea. Ecological Entomology, 2003, 28, 704-716.	1.1	47
85	How to be a Fig Wasp. Annual Review of Entomology, 2002, 47, 299-330.	5.7	397
86	Speciation in fig pollinators and parasites. Molecular Ecology, 2002, 11, 1573-1578.	2.0	160
87	Low host specificity of herbivorous insects in a tropical forest. Nature, 2002, 416, 841-844.	13.7	588
88	Pollination and parasitism in functionally dioecious figs. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 651-659.	1.2	70
89	Molecular Phylogenies of Fig Wasps: Partial Cocladogenesis of Pollinators and Parasites. Molecular Phylogenetics and Evolution, 2001, 21, 55-71.	1.2	106
90	Phylogenetic Relationships of Fig Wasps Pollinating Functionally Dioecious Ficus Based on Mitochondrial DNA Sequences and Morphology. Systematic Biology, 2001, 50, 243-267.	2.7	58

#	Article	IF	CITATIONS
91	Phylogenetic Relationships of Fig Wasps Pollinating Functionally Dioecious Ficus Based on Mitochondrial DNA Sequences and Morphology. Systematic Biology, 2001, 50, 243-267.	2.7	36
92	Phylogenetic relationships of functionally dioecious FICUS (Moraceae) based on ribosomal DNA sequences and morphology. American Journal of Botany, 2000, 87, 1342-1357.	0.8	165
93	Phylogenetic Analysis of Dioecy in Monocotyledons. American Naturalist, 2000, 155, 46-58.	1.0	142
94	Phenology of Ficus variegata in a seasonal wet tropical forest at Cape Tribulation, Australia. Journal of Biogeography, 1996, 23, 467-475.	1.4	34
95	Untangling Multiple Factors in Spatial Distributions: Lilies, Gophers, and Rocks. Ecology, 1996, 77, 1698-1715.	1.5	337
96	Reproductive Strategies and Barriers to Hybridization Between Tellima grandiflora and Tolmeia menziesii (Saxifragaceae). American Journal of Botany, 1996, 83, 910.	0.8	10
97	Seed Set and Wasp Predation in Dioecious Ficus variegata from an Australian Wet Tropical Forest. Biotropica, 1995, 27, 391.	0.8	22