
Julia Maldonado-Valderrama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/656768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of bile salts in digestion. Advances in Colloid and Interface Science, 2011, 165, 36-46.	7.0	422
2	Interfacial rheology of protein–surfactant mixtures. Current Opinion in Colloid and Interface Science, 2010, 15, 271-282.	3.4	228
3	Interfacial Characterization of β-Lactoglobulin Networks: Displacement by Bile Salts. Langmuir, 2008, 24, 6759-6767.	1.6	151
4	Bile salts in digestion and transport of lipids. Advances in Colloid and Interface Science, 2019, 274, 102045.	7.0	105
5	Surface Properties and Foam Stability of Protein/Surfactant Mixtures:  Theory and Experiment. Journal of Physical Chemistry C, 2007, 111, 2715-2723.	1.5	95
6	Physicochemical properties and digestibility of emulsified lipids in simulated intestinal fluids: influence of interfacial characteristics. Soft Matter, 2011, 7, 6167.	1.2	91
7	Dilatational Rheology of β-Casein Adsorbed Layers at Liquidâ~'Fluid Interfaces. Journal of Physical Chemistry B, 2005, 109, 17608-17616.	1.2	71
8	Foams and emulsions of β-casein examined by interfacial rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 116-122.	2.3	71
9	Effect of Gastric Conditions on β-Lactoglobulin Interfacial Networks: Influence of the Oil Phase on Protein Structure. Langmuir, 2010, 26, 15901-15908.	1.6	69
10	Dynamics of protein adsorption at the oil–water interface: comparison with a theoretical model. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 261, 85-92.	2.3	65
11	In vitro gastric digestion of interfacial protein structures: visualisation by AFM. Soft Matter, 2010, 6, 4908.	1.2	62
12	Block copolymers at interfaces: Interactions with physiological media. Advances in Colloid and Interface Science, 2014, 206, 414-427.	7.0	59
13	In vitro digestion of interfacial protein structures. Soft Matter, 2013, 9, 1043-1053.	1.2	58
14	Investigating the effect of surfactants on lipase interfacial behaviour in the presence of bile salts. Food Hydrocolloids, 2011, 25, 809-816.	5.6	57
15	Interactions between Pluronics (F127 and F68) and Bile Salts (NaTDC) in the Aqueous Phase and the Interface of Oil-in-Water Emulsions. Langmuir, 2013, 29, 2520-2529.	1.6	56
16	Microgels at interfaces, from mickering emulsions to flat interfaces and back. Advances in Colloid and Interface Science, 2021, 288, 102350.	7.0	49
17	The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions. European Physical Journal E, 2009, 30, 165-174.	0.7	46
18	Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Advances in Colloid and Interface Science, 2021, 290, 102365.	7.0	41

#	Article	IF	CITATIONS
19	Experimental studies on the desorption of adsorbed proteins from liquid interfaces. Food Hydrocolloids, 2005, 19, 479-483.	5.6	40
20	Comparative Study of Adsorbed and Spread β-Casein Monolayers at the Waterâ^'Air Interface with the Pendant Drop Technique. Langmuir, 2003, 19, 8436-8442.	1.6	39
21	Probing the <i>in Situ</i> Competitive Displacement of Protein by Nonionic Surfactant Using Atomic Force Microscopy. Langmuir, 2010, 26, 12560-12566.	1.6	39
22	Adsorption of antibody onto Pluronic F68-covered nanoparticles: link with surface properties. Soft Matter, 2011, 7, 8450.	1.2	34
23	Protein unfolding at fluid interfaces and its effect on proteolysis in the stomach. Soft Matter, 2012, 8, 4402.	1.2	34
24	Surface rheology of sorbitan tristearate and \hat{l}^2 -lactoglobulin: Shear and dilatational behavior. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 713-722.	1.0	32
25	Improved digestibility of β-lactoglobulin by pulsed light processing: a dilatational and shear study. Soft Matter, 2014, 10, 9702-9714.	1.2	32
26	On the Difference between Foams Stabilized by Surfactants and Whole Casein or β-Casein. Comparison of Foams, Foam Films, and Liquid Surfaces Studies. Journal of Physical Chemistry B, 2008, 112, 3989-3996.	1.2	31
27	Bile salts at the air–water interface: Adsorption and desorption. Colloids and Surfaces B: Biointerfaces, 2014, 120, 176-183.	2.5	31
28	Subphase exchange experiments with the pendant drop technique. Advances in Colloid and Interface Science, 2015, 222, 488-501.	7.0	31
29	Interfacial characterization of Pluronic PE9400 at biocompatible (air–water and limonene–water) interfaces. Colloids and Surfaces B: Biointerfaces, 2013, 111, 171-178.	2.5	30
30	Thermoresponsive microgels at the air–water interface: the impact of the swelling state on interfacial conformation. Soft Matter, 2017, 13, 230-238.	1.2	29
31	β-Casein Adsorption at Liquid Interfaces: Theory and Experiment. Journal of Physical Chemistry B, 2004, 108, 12940-12945.	1.2	28
32	Surface characterization of human serum albumin and sodium perfluorooctanoate mixed solutions by pendant drop tensiometry and circular dichroism. Biopolymers, 2006, 82, 261-271.	1.2	27
33	Effect of emulsifier type against the action of bile salts at oil–water interfaces. Food Research International, 2012, 48, 140-147.	2.9	26
34	Adsorption of DNA onto anionic lipid surfaces. Advances in Colloid and Interface Science, 2014, 206, 172-185.	7.0	26
35	Probing in vitro digestion at oil–water interfaces. Current Opinion in Colloid and Interface Science, 2019, 39, 51-60.	3.4	25
36	Using AFM to probe the complexation of DNA with anionic lipids mediated by Ca2+: the role of surface pressure. Soft Matter, 2014, 10, 2805.	1.2	24

#	Article	IF	CITATIONS
37	Adsorption of soy protein isolate at air–water and oil–water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 323, 155-162.	2.3	23
38	Adsorbed and Spread β-Casein Monolayers at Oilâ^'Water Interfaces. Langmuir, 2004, 20, 6093-6095.	1.6	22
39	Comparative interfacial in vitro digestion of protein and polysaccharide oil/water films. Colloids and Surfaces B: Biointerfaces, 2018, 161, 547-554.	2.5	22
40	pH influences the interfacial properties of blue whiting (M. poutassou) and whey protein hydrolysates determining the physical stability of fish oil-in-water emulsions. Food Hydrocolloids, 2022, 122, 107075.	5.6	22
41	Surface Characterization and AFM Imaging of Mixed Fibrinogenâ^'Surfactant Films. Journal of Physical Chemistry B, 2011, 115, 6304-6311.	1.2	21
42	Pluronic-covered oil–water interfaces under simulated duodenal conditions. Food Hydrocolloids, 2014, 34, 54-61.	5.6	21
43	Temperature and electrostatics effects on charged poly(N-isopropylacrylamide) microgels at the interface. Journal of Molecular Liquids, 2020, 303, 112678.	2.3	20
44	Investigating the role of hyaluronic acid in improving curcumin bioaccessibility from nanoemulsions. Food Chemistry, 2021, 351, 129301.	4.2	18
45	Natural Inhibitors of Lipase: Examining Lipolysis in a Single Droplet. Journal of Agricultural and Food Chemistry, 2015, 63, 10333-10340.	2.4	15
46	In vitro gastric lipid digestion of emulsions with mixed emulsifiers: Correlation between lipolysis kinetics and interfacial characteristics. Food Hydrocolloids, 2022, 128, 107576.	5.6	15
47	Investigating the effect of an arterial hypertension drug on the structural properties of plasma protein. Colloids and Surfaces B: Biointerfaces, 2011, 87, 489-497.	2.5	14
48	Effect of cross-linker glutaraldehyde on gastric digestion of emulsified albumin. Colloids and Surfaces B: Biointerfaces, 2016, 145, 899-905.	2.5	14
49	Specific Ion Effects in Cholesterol Monolayers. Materials, 2016, 9, 340.	1.3	13
50	Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers. Colloids and Surfaces B: Biointerfaces, 2019, 173, 295-302.	2.5	11
51	A scaling analysis of β-casein monolayers at liquid–fluid interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 323-328.	2.3	10
52	Interaction of DNA with likely-charged lipid monolayers: An experimental study. Colloids and Surfaces B: Biointerfaces, 2019, 178, 170-176.	2.5	10
53	Assessing in vitro digestibility of food biopreservative AS-48. Food Chemistry, 2018, 246, 249-257.	4.2	9
54	Atomic force microscopy as a tool to study the adsorption of DNA onto lipid interfaces. Microscopy Research and Technique, 2017, 80, 11-17.	1.2	7

#	Article	IF	CITATIONS
55	Effect of Hyaluronic Acid and Pluronic-F68 on the Surface Properties of Foam as a Delivery System for Polidocanol in Sclerotherapy. Pharmaceutics, 2020, 12, 1039.	2.0	7
56	Hyaluronic acid and human/bovine serum albumin shelled nanocapsules: Interaction with mucins and in vitro digestibility of interfacial films. Food Chemistry, 2022, 383, 132330.	4.2	7
57	Condensation of Model Lipid Films by Cholesterol: Specific Ion Effects. Coatings, 2019, 9, 474.	1.2	5
58	Identification of the thistle milk component Silibinin(A) and Glutathione-disulphide as potential inhibitors of the pancreatic lipase: Potential implications on weight loss. Journal of Functional Foods, 2021, 83, 104479.	1.6	4
59	Foamy oysters: vesicular microstructure production in the Gryphaeidae via emulsification. Journal of the Royal Society Interface, 2020, 17, 20200505.	1.5	4
60	Complexation of DNA with Thermoresponsive Charged Microgels: Role of Swelling State and Electrostatics. Gels, 2022, 8, 184.	2.1	3
61	Interactions Between Polymeric Surfactants and Bile Salts: New Routes for Controlling Lipid Digestion of Oil-in-Water Emulsions. Special Publication - Royal Society of Chemistry, 2014, , 334-341.	0.0	1
62	Improved DNA condensation, stability, and transfection with alkyl sulfonyl-functionalized PAMAM G2. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	0
63	Food Colloids 2010: On the Road from Interfaces to Consumers. Applied Rheology, 2010, 20, 243-244.	3.5	0