List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6567308/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Bandâ€Gap Conjugated Polymers with Strong Interchain Aggregation and Very High Hole Mobility Towards Highly Efficient Thickâ€Film Polymer Solar Cells. Advanced Materials, 2014, 26, 2586-2591.	21.0	375
2	Design of core-shelled g-C3N4@ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chemical Engineering Journal, 2021, 416, 129148.	12.7	165
3	High Efficiency and High <i>V</i> _{oc} Inverted Polymer Solar Cells Based on a Low-Lying HOMO Polycarbazole Donor and a Hydrophilic Polycarbazole Interlayer on ITO Cathode. Journal of Physical Chemistry C, 2012, 116, 14188-14198.	3.1	105
4	Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 2019, 62, 434-441.	16.0	103
5	Achieving efficient inverted planar perovskite solar cells with nondoped PTAA as a hole transport layer. Organic Electronics, 2019, 71, 106-112.	2.6	84
6	Donor–Acceptor Copolymers Based on Thermally Cleavable Indigo, Isoindigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 9038-9051.	8.0	69
7	A donor polymer based on 3-cyanothiophene with superior batch-to-batch reproducibility for high-efficiency organic solar cells. Energy and Environmental Science, 2021, 14, 5530-5540.	30.8	66
8	Narrow-Band-Gap Conjugated Polymers Based on 2,7-Dioctyl-Substituted Dibenzo[<i>a,c</i>]phenazine Derivatives for Polymer Solar Cells. Macromolecules, 2014, 47, 2921-2928.	4.8	62
9	Substantial Performance Improvement in Inverted Polymer Light-Emitting Diodes via Surface Plasmon Resonance Induced Electrode Quenching Control. ACS Applied Materials & Interfaces, 2014, 6, 11001-11006.	8.0	51
10	Exceeding 4% external quantum efficiency in ultraviolet organic light-emitting diode using PEDOT:PSS/MoO <i>x</i> double-stacked hole injection layer. Applied Physics Letters, 2017, 110, .	3.3	47
11	Solution-processed aqueous composite hole injection layer of PEDOT:PSS+MoO for efficient ultraviolet organic light-emitting diode. Organic Electronics, 2017, 46, 7-13.	2.6	46
12	Solution-processed MoOx hole injection layer towards efficient organic light-emitting diode. Organic Electronics, 2016, 39, 43-49.	2.6	42
13	Synthesis and characterization of thieno[3,2â€b]thiopheneâ€isoindigoâ€based copolymers as electron donor and hole transport materials for bulkâ€heterojunction polymer solar cells. Journal of Polymer Science Part A, 2013, 51, 424-434.	2.3	34
14	An extended π-conjugated area of electron-donating units in D–A structured polymers towards high-mobility field-effect transistors and highly efficient polymer solar cells. Journal of Materials Chemistry C, 2017, 5, 2786-2793.	5.5	32
15	A wide temperature tolerance, solution-processed MoOx interface layer for efficient and stable organic solar cells. Solar Energy Materials and Solar Cells, 2017, 159, 136-142.	6.2	31
16	Cross-Linkable and Alcohol-Soluble Pyridine-Incorporated Polyfluorene Derivative as a Cathode Interface Layer for High-Efficiency and Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 12296-12304.	8.0	28
17	Synthesis of a Novel Lowâ€Bandgap Polymer Based on a Ladderâ€Type Heptacyclic Arene Consisting of Outer Thieno[3,2â€b]thiophene Units for Efficient Photovoltaic Application. Macromolecular Rapid Communications, 2013, 34, 681-688.	3.9	26
18	Efficient Single-Layer White Light-Emitting Devices Based on Silole-Containing Polymers. Journal of Display Technology, 2013, 9, 490-496.	1.2	26

#	Article	IF	CITATIONS
19	D-A copolymers based on 5,6-difluorobenzotriazole and oligothiophenes: Synthesis, field effect transistors, and polymer solar cells. Polymer, 2014, 55, 1707-1715.	3.8	26
20	Polymer with a 3D conductive network: a thickness-insensitive electron transport layer for inverted polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 12969-12973.	10.3	25
21	Using d-limonene as the non-aromatic and non-chlorinated solvent for the fabrications of high performance polymer light-emitting diodes and field-effect transistors. Organic Electronics, 2015, 23, 193-198.	2.6	23
22	Nanowires of indigo and isoindigo-based molecules with thermally removable groups. Dyes and Pigments, 2016, 125, 54-63.	3.7	23
23	Organic/Organic Cathode Bi-Interlayers Based on a Water-Soluble Nonconjugated Polymer and an Alcohol-Soluble Conjugated Polymer for High Efficiency Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 27871-27877.	8.0	21
24	Benzoselenadiazole-based donor-acceptor small molecule: Synthesis, aggregation-induced emission and electroluminescence. Dyes and Pigments, 2018, 149, 399-406.	3.7	21
25	Cyano-bridged Schottky junction of CN-TiC for enhanced photocatalytic H2 evolution and tetracycline degradation. Applied Surface Science, 2022, 583, 152515.	6.1	19
26	Using ultra-high molecular weight hydrophilic polymer as cathode interlayer for inverted polymer solar cells: Enhanced efficiency and excellent air-stability. Solar Energy Materials and Solar Cells, 2014, 123, 104-111.	6.2	18
27	Effects of including electron-withdrawing atoms on the physical and photovoltaic properties of indacenodithieno[3,2-b]thiophene-based donor–acceptor polymers: towards an acceptor design for efficient polymer solar cells. RSC Advances, 2017, 7, 20440-20450.	3.6	18
28	A new fluorinated pyran-bridged A-D-A type small molecular acceptor for organic solar cells. Dyes and Pigments, 2020, 175, 108165.	3.7	18
29	The efficient and non-hysteresis inverted non-fullerenes/CH3NH3PbI3 planar solar cells. Solar Energy, 2019, 189, 307-313.	6.1	16
30	Pyran-bridged A-D-A type small molecular acceptors for organic solar cells. Solar Energy, 2019, 183, 463-468.	6.1	15
31	Synergetic defects boost charge separation in CN for enhanced photocatalytic water splitting. Journal of Materials Chemistry C, 2020, 8, 9366-9372.	5.5	15
32	Ti3C2Tx MXene for organic/perovskite optoelectronic devices. Journal of Central South University, 2021, 28, 3935-3958.	3.0	15
33	Small molecular non-fullerene electron acceptors for P3HT-based bulk-heterojunction solar cells. Science China Chemistry, 2014, 57, 973-981.	8.2	14
34	An Ultravioletâ€Deposited MoO 3 Film as Anode Interlayer for Highâ€Performance Polymer Solar Cells. Advanced Materials Interfaces, 2020, 7, 1901912.	3.7	14
35	A water-processable organic electron-selective layer for solution-processed inverted organic solar cells. Applied Physics Letters, 2014, 104, 053304.	3.3	12
36	Low bandâ€gap D–A conjugated copolymers based on anthradithiophene and diketopyrrolopyrrole for polymer solar cells and fieldâ€effect transistors. Journal of Polymer Science Part A, 2014, 52, 1652-1661.	2.3	12

#	Article	IF	CITATIONS
37	High alcohol-soluble MoO x gel for interfacial layer in organic solar cells. Current Applied Physics, 2017, 17, 1021-1028.	2.4	12
38	A solution-processed, ultraviolet-irradiation-derived WO3 film as anode interface layer for high-performance non-fullerene organic solar cells. Solar Energy, 2021, 216, 211-216.	6.1	12
39	Constructing defect-related subband in silver indium sulfide QDs via pH-dependent oriented aggregation for boosting photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 593, 222-230.	9.4	11
40	5,6-Difluorobenzothiazole-Based Conjugated Polymers with Large Band Gaps and Deep Highest Occupied Molecular Orbital Levels. ACS Applied Materials & Interfaces, 2018, 10, 11094-11100.	8.0	10
41	Synthesis, characterization and device application of a novel blue-emitting copolymer incorporating fluorene and benzothiazole backbone units. Optical Materials, 2019, 98, 109443.	3.6	10
42	Sequentially Deposited Active Layer with Bulk-Heterojunction-like Morphology for Efficient Conventional and Inverted All-Polymer Solar Cells. ACS Applied Energy Materials, 2021, 4, 13307-13315.	5.1	10
43	Donor–acceptor copolymers based on phenanthrene as electronâ€donating unit: Synthesis and photovoltaic performances. Journal of Polymer Science Part A, 2013, 51, 4966-4974.	2.3	9
44	Sky-blue phosphorescent organic light-emitting diodes with dibenzo-24-crown-8 substituted iridium(III) complexes as the dopants. Dyes and Pigments, 2017, 138, 77-82.	3.7	9
45	Facile solution-processed aqueous MoO for feasible application in organic light-emitting diode. Optics and Laser Technology, 2018, 101, 85-90.	4.6	9
46	Dibenzothiophene- S,S -dioxide based medium-band-gap polymers for efficient bulk heterojunction solar cells. Organic Electronics, 2014, 15, 2950-2958.	2.6	8
47	Nâ€Type Quinoidal Polymers Based on Dipyrrolopyrazinedione for Application in Allâ€Polymer Solar Cells. Chemistry - A European Journal, 2021, 27, 13527-13533.	3.3	8
48	Novel dinuclear cyclometalated Platinum(II) complex as orange phosphorescent emitters for single-emitting-layer white polymer light-emitting diodes. Optical Materials, 2019, 88, 551-557.	3.6	7
49	Alcohol-soluble fluorene derivate functionalized with pyridyl groups as a high-performance cathode interfacial material in organic solar cells. New Journal of Chemistry, 2021, 45, 4584-4591.	2.8	5
50	Preparation and Characterization of PEG4000 Palmitate/PEG8000 Palmitate-Solid Dispersion Containing the Poorly Water-Soluble Drug Andrographolide. Advances in Polymer Technology, 2020, 2020, 1-7.	1.7	4
51	Synthesis of orthogonal push–pull chromophores <i>via</i> click reaction of arylynamines. Organic and Biomolecular Chemistry, 2022, 20, 4081-4085.	2.8	4
52	A new wide-bandgap conjugated polymer based on imide-fused benzotriazole for highly efficient nonfullerene polymer solar cells. Dyes and Pigments, 2018, 158, 219-224.	3.7	3
53	Chlorination converting one efficient polymeric donor to an effective electron acceptor in organic solar cells. Nano Select, 0, , .	3.7	3
54	Efficient Inverted Polymer Solar Cells with ITO Cathode Modified by Zinc Oxide and Polyethylene Oxide Bilayers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800113.	1.8	2

#	Article	IF	CITATIONS
55	Poly(3,4â€ethylenedioxythiophene)â€poly(styrenesulfonate) Modified by Water for Efficient Inverted Perovskite Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100066.	1.8	1
56	OUP accepted manuscript. Journal of Pharmacy and Pharmacology, 2022, , .	2.4	1
57	Efficient and stable inverted polymer solar cells prepared via air exposure. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600580.	1.8	0
58	Electroluminescent Performances of Iridium Complexes with Dibenzo-18-crown-6. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 941-947.	3.7	0
59	Solution-Processed MoCl5 and its Composites for Tailoring Hole Injection in Near-Ultraviolet Organic Light-Emitting Diodes. Journal of Electronic Materials, 2022, 51, 1850-1856.	2.2	0