
Xiumei Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6567248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 24415-24425.	4.0	246
2	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	4.1	174
3	Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. Journal of Materials Science and Technology, 2020, 59, 243-261.	5.6	135
4	The aligned core–sheath nanofibers with electrical conductivity for neural tissue engineering. Journal of Materials Chemistry B, 2014, 2, 7945-7954.	2.9	130
5	Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials, 2021, 266, 120385.	5.7	119
6	Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Journal of Colloid and Interface Science, 2019, 534, 625-636.	5.0	106
7	Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids and Surfaces B: Biointerfaces, 2016, 142, 165-172.	2.5	98
8	Polypyrrole-coated poly(<scp>l</scp> -lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. Journal of Materials Chemistry B, 2016, 4, 6670-6679.	2.9	94
9	3D printing of biomimetic vasculature for tissue regeneration. Materials Horizons, 2019, 6, 1197-1206.	6.4	88
10	Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Materials Science and Engineering C, 2018, 82, 121-129.	3.8	87
11	Polymerizing Pyrrole Coated Poly (l-lactic acid-co-ε-caprolactone) (PLCL) Conductive Nanofibrous Conduit Combined with Electric Stimulation for Long-Range Peripheral Nerve Regeneration. Frontiers in Molecular Neuroscience, 2016, 9, 117.	1.4	83
12	Development of Nanofiber Sponges-Containing Nerve Guidance Conduit for Peripheral Nerve Regeneration in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 26684-26696.	4.0	77
13	Fabrication of silk fibroin blended P(LLAâ€CL) nanofibrous scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 93A, 984-993.	2.1	75
14	Bi-layered electrospun nanofibrous membrane with osteogenic and antibacterial properties for guided bone regeneration. Colloids and Surfaces B: Biointerfaces, 2019, 176, 219-229.	2.5	75
15	Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Materials Science and Engineering C, 2019, 94, 190-199.	3.8	73
16	Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect. Colloids and Surfaces B: Biointerfaces, 2016, 139, 156-163.	2.5	66
17	Three Dimensional Printing Bilayer Membrane Scaffold Promotes Wound Healing. Frontiers in Bioengineering and Biotechnology, 2019, 7, 348.	2.0	64
18	A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials, 2021, 274, 120841.	5.7	60

Хіимеі Мо

#	Article	IF	CITATIONS
19	Electrospun nanoyarn scaffold and its application in tissue engineering. Materials Letters, 2012, 89, 146-149.	1.3	57
20	Effect of Pore Size on Cell Behavior Using Melt Electrowritten Scaffolds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 629270.	2.0	57
21	Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord. Materials Science and Engineering C, 2017, 70, 637-645.	3.8	53
22	Nerve conduits constructed by electrospun P(LLA-CL) nanofibers and PLLA nanofiber yarns. Journal of Materials Chemistry B, 2015, 3, 8823-8831.	2.9	50
23	Laminin-coated nerve guidance conduits based on poly(<scp>l</scp> -lactide-co-glycolide) fibers and yarns for promoting Schwann cells' proliferation and migration. Journal of Materials Chemistry B, 2017, 5, 3186-3194.	2.9	50
24	Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration. Acta Biomaterialia, 2020, 117, 180-191.	4.1	50
25	A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomaterialia, 2020, 118, 83-99.	4.1	50
26	Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment. Journal of Biomedical Nanotechnology, 2015, 11, 1947-1960.	0.5	46
27	A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning. Colloids and Surfaces B: Biointerfaces, 2016, 146, 632-641.	2.5	40
28	Application of a bilayer tubular scaffold based on electrospun poly(<scp>l</scp> -lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. Journal of Materials Chemistry B, 2017, 5, 139-150.	2.9	38
29	Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation. Colloids and Surfaces B: Biointerfaces, 2016, 144, 108-117.	2.5	34
30	Electrospun polypyrrole-coated polycaprolactone nanoyarn nerve guidance conduits for nerve tissue engineering. Frontiers of Materials Science, 2018, 12, 438-446.	1.1	34
31	High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioactive Materials, 2021, 6, 2173-2186.	8.6	34
32	Moving Electrospun Nanofibers and Bioprinted Scaffolds toward Translational Applications. Advanced Healthcare Materials, 2020, 9, e1901761.	3.9	33
33	Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury. Theranostics, 2020, 10, 10214-10230.	4.6	27
34	The enhanced atorvastatin hepatotoxicity in diabetic rats was partly attributed to the upregulated hepatic Cyp3a and SLCO1B1. Scientific Reports, 2016, 6, 33072.	1.6	26
35	Fabrication of Multilayered Nanofiber Scaffolds with a Highly Aligned Nanofiber Yarn for Anisotropic Tissue Regeneration. ACS Omega, 2020, 5, 24340-24350.	1.6	24
36	Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iranian Polymer Journal (English Edition), 2015, 24, 29-40.	1.3	22

Хіимеі Мо

#	Article	IF	CITATIONS
37	Stem cell homing-based tissue engineering using bioactive materials. Frontiers of Materials Science, 2017, 11, 93-105.	1.1	21
38	Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study. Colloids and Surfaces B: Biointerfaces, 2016, 144, 21-32.	2.5	19
39	Development of poly (L-lactide-co-caprolactone) multichannel nerve conduit with aligned electrospun nanofibers for Schwann cell proliferation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 323-329.	1.8	18
40	Development of Dynamic Liquid and Conjugated Electrospun Poly(L-lactide-co-caprolactone)/Collagen Nanoyarns for Regulating Vascular Smooth Muscle Cells Growth. Journal of Biomedical Nanotechnology, 2017, 13, 303-312.	0.5	17
41	Fabrication and characterization of Antheraea pernyi silk fibroin-blended P(LLA-CL) nanofibrous scaffolds for peripheral nerve tissue engineering. Frontiers of Materials Science, 2017, 11, 22-32.	1.1	17
42	Exosomes From M2 Macrophage Promote Peritendinous Fibrosis Posterior Tendon Injury via the MiR-15b-5p/FGF-1/7/9 Pathway by Delivery of circRNA-Ep400. Frontiers in Cell and Developmental Biology, 2021, 9, 595911.	1.8	16
43	Electrospun Nanofibers for Tissue Engineering. , 2019, , 719-734.		15
44	Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Materials Science and Engineering C, 2022, 134, 112643.	3.8	15
45	Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. Journal of Biomaterials Applications, 2016, 31, 784-796.	1.2	14
46	Mechanically-reinforced 3D scaffold constructed by silk nonwoven fabric and silk fibroin sponge. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111361.	2.5	14
47	Converging 3D Printing and Electrospinning: Effect of Poly(<scp>l</scp> â€lactide)/Gelatin Based Short Nanofibers Aerogels on Tracheal Regeneration. Macromolecular Bioscience, 2022, 22, e2100342.	2.1	14
48	Three-Dimensional Tendon Scaffold Loaded with <i>TGF-β1</i> Gene Silencing Plasmid Prevents Tendon Adhesion and Promotes Tendon Repair. ACS Biomaterials Science and Engineering, 2021, 7, 5739-5748.	2.6	12
49	Development of Dual Neurotrophins-Encapsulated Electrospun Nanofibrous Scaffolds for Peripheral Nerve Regeneration. Journal of Biomedical Nanotechnology, 2016, 12, 1987-2000.	0.5	11
50	Groove fibers based porous scaffold for cartilage tissue engineering application. Materials Letters, 2017, 192, 44-47.	1.3	9
51	Evaluation of PLGA microspheres with triple regimen on longâ€ŧerm survival of vascularized composite allograft – an experimental study. Transplant International, 2020, 33, 450-461.	0.8	9
52	3D Printing Bioink Preparation and Application in Cartilage Tissue Reconstruction in Vitro. Journal of Shanghai Jiaotong University (Science), 2021, 26, 267-271.	0.5	4
53	Anti-CD133 antibody loaded bilayer tubular scaffold based on poly(L-lactide-co-caprolactone)/collagen nanofibers and nanoyarns for vascular tissue engineering. Journal of Controlled Release, 2017, 259, e129.	4.8	2
54	Formability of Printing Ink for Melt Electrowriting. Journal of Shanghai Jiaotong University (Science), 2021, 26, 411-415.	0.5	2

#	Article	IF	CITATIONS
55	Use of Electrospun Phenylalanine/Poly-ε-Caprolactone Chiral Hybrid Scaffolds to Promote Endothelial Remodeling. Frontiers in Bioengineering and Biotechnology, 2021, 9, 773635.	2.0	2