Michel Bosman

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6567204/michel-bosman-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

173 5,935 40 73 g-index

184 6,746 7.7 5.78 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
173	Nanoscale mapping of optically inaccessible bound-states-in-the-continuum <i>Light: Science and Applications</i> , 2022 , 11, 20	16.7	6
172	Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets <i>Microscopy and Microanalysis</i> , 2022 , 1-11	0.5	0
171	A scheme for simulating multi-level phase change photonics materials. <i>Npj Computational Materials</i> , 2021 , 7,	10.9	3
170	Anisotropic point defects in rhenium diselenide monolayers. <i>IScience</i> , 2021 , 24, 103456	6.1	О
169	Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. <i>Nature Electronics</i> , 2021 , 4, 348-356	28.4	34
168	Electrostatically Tunable Near-Infrared Plasmonic Resonances in Solution-Processed Atomically Thin NbSe. <i>Advanced Materials</i> , 2021 , 33, e2101950	24	5
167	Impurity-Induced Emission in Re-Doped WS Monolayers. <i>Nano Letters</i> , 2021 , 21, 5293-5300	11.5	1
166	Coherent Sb/CuTe Core/Shell Nanostructure with Large Strain Contrast Boosting the Thermoelectric Performance of n-Type PbTe. <i>Advanced Functional Materials</i> , 2021 , 31, 2007340	15.6	17
165	Substitutional doping in 2D transition metal dichalcogenides. <i>Nano Research</i> , 2021 , 14, 1668-1681	10	29
164	Electron dynamics in plasmons. <i>Nanoscale</i> , 2021 , 13, 2801-2810	7.7	4
163	Controlling phase transition in WSe2 towards ideal n-type transistor. <i>Nano Research</i> , 2021 , 14, 2703-27	100	1
162	Unlocking the origin of compositional fluctuations in InGaN light emitting diodes. <i>Physical Review Materials</i> , 2021 , 5,	3.2	3
161	Gate-Defined Quantum Confinement in CVD 2D WS. Advanced Materials, 2021, e2103907	24	3
160	The nature of column boundaries in micro-structured silicon oxide nanolayers. <i>APL Materials</i> , 2021 , 9, 121107	5.7	1
159	Sustainable Fuel Production from Ambient Moisture via Ferroelectrically Driven MoS Nanosheets. <i>Advanced Materials</i> , 2020 , 32, e2000971	24	24
158	Plasmon-Enhanced Resonant Photoemission Using Atomically Thick Dielectric Coatings. <i>ACS Nano</i> , 2020 , 14, 8806-8815	16.7	12
157	Sustainable Fuel Production: Sustainable Fuel Production from Ambient Moisture via Ferroelectrically Driven MoS2 Nanosheets (Adv. Mater. 25/2020). <i>Advanced Materials</i> , 2020 , 32, 207018	8 ²⁴	1

156	Heterophase fcc-2H-fcc gold nanorods. <i>Nature Communications</i> , 2020 , 11, 3293	17.4	41
155	Correlation of Dielectric Breakdown and Nanoscale Adhesion in Silicon Dioxide Thin Films 2020 ,		1
154	Particle simulation of plasmons. <i>Nanophotonics</i> , 2020 , 9, 3303-3313	6.3	4
153	Localized Probing of Dielectric Breakdown in Multilayer Hexagonal Boron Nitride. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 55000-55010	9.5	6
152	Growth of Nb-Doped Monolayer WS by Liquid-Phase Precursor Mixing. ACS Nano, 2019, 13, 10768-1077	5 16.7	54
151	Modeling of Diffusion and Incorporation of Interstitial Oxygen Ions at the TiN/SiO Interface. <i>ACS Applied Materials & Applied & Applied</i>	9.5	4
150	An oxygen vacancy mediated Ag reduction and nucleation mechanism in SiO2 RRAM devices. <i>Microelectronics Reliability</i> , 2019 , 98, 144-152	1.2	10
149	3D characterization of hard breakdown in RRAM device. <i>Microelectronic Engineering</i> , 2019 , 216, 111042	2.5	3
148	Boron Vacancies Causing Breakdown in 2D Layered Hexagonal Boron Nitride Dielectrics. <i>IEEE Electron Device Letters</i> , 2019 , 40, 1321-1324	4.4	12
147	Ultrasmall Designed Plasmon Resonators by Fused Colloidal Nanopatterning. <i>ACS Applied Materials & Materials (Materials ACS)</i> , 11, 45207-45213	9.5	1
146	Giant Photoinduced Chirality in Thin Film Ge2Sb2Te5. <i>Physica Status Solidi - Rapid Research Letters</i> , 2019 , 13, 1900449	2.5	1
145	Dual phases of crystalline and electronic structures in the nanocrystalline perovskite CsPbBr3. <i>NPG Asia Materials</i> , 2019 , 11,	10.3	20
144	Atomic Scale Modulation of Self-Rectifying Resistive Switching by Interfacial Defects. <i>Advanced Science</i> , 2018 , 5, 1800096	13.6	24
143	Conductive Atomic Force Microscope Study of Bipolar and Threshold Resistive Switching in 2D Hexagonal Boron Nitride Films. <i>Scientific Reports</i> , 2018 , 8, 2854	4.9	38
142	Stochastic Modeling of FinFET Degradation Based on a Resistor Network Embedded Metropolis Monte Carlo Method. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 440-447	2.9	3
141	In Situ Kinetic and Thermodynamic Growth Control of Au-Pd Core-Shell Nanoparticles. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11680-11685	16.4	45
140	Mechanism of soft and hard breakdown in hexagonal boron nitride 2D dielectrics 2018,		9
139	Interlayer interactions in 2D WS/MoS heterostructures monolithically grown by in situ physical vapor deposition. <i>Nanoscale</i> , 2018 , 10, 22927-22936	7.7	38

138	Photoactivity and Stability Co-Enhancement: When Localized Plasmons Meet Oxygen Vacancies in MgO. <i>Small</i> , 2018 , 14, e1803233	11	18
137	Theoretical Study of Ag Interactions in Amorphous Silica RRAM Devices 2018,		1
136	Molecular Coatings for Stabilizing Silver and Gold Nanocubes under Electron Beam Irradiation. <i>Langmuir</i> , 2017 , 33, 1189-1196	4	12
135	Textured V-Pit Green Light Emitting Diode as a Wavelength-Selective Photodetector for Fast Phosphor-Based White Light Modulation. <i>ACS Photonics</i> , 2017 , 4, 443-448	6.3	10
134	Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices. <i>Microelectronic Engineering</i> , 2017 , 178, 98-103	2.5	45
133	Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure. <i>Scientific Reports</i> , 2017 , 7, 9274	4.9	31
132	Direct observation of the nanoscale Kirkendall effect during galvanic replacement reactions. <i>Nature Communications</i> , 2017 , 8, 1224	17.4	107
131	Multistep nucleation of nanocrystals in aqueous solution. <i>Nature Chemistry</i> , 2017 , 9, 77-82	17.6	218
130	Quantitative Nanoplasmonics in the TEM 2016 , 777-778		
129	Conductive filament formation at grain boundary locations in polycrystalline HfO2 -based MIM stacks: Computational and physical insight. <i>Microelectronics Reliability</i> , 2016 , 64, 204-209	1.2	10
128	Charge transfer plasmon resonances across silver finolecule lilver junctions: estimating the terahertz conductance of molecules at near-infrared frequencies. <i>RSC Advances</i> , 2016 , 6, 70884-70894	3.7	14
127	Room temperature stable CO -free H production from methanol with magnesium oxide nanophotocatalysts. <i>Science Advances</i> , 2016 , 2, e1501425	14.3	49
126	Compliance current dominates evolution of NiSi2 defect size in Ni/dielectric/Si RRAM devices. <i>Microelectronics Reliability</i> , 2016 , 61, 71-77	1.2	11
125	An experimental and theoretical investigation of the anisotropic branching in gold nanocrosses. <i>Nanoscale</i> , 2016 , 8, 543-52	7.7	84
124	Real-Time Dynamics of Galvanic Replacement Reactions of Silver Nanocubes and Au Studied by Liquid-Cell Transmission Electron Microscopy. <i>ACS Nano</i> , 2016 , 10, 7689-95	16.7	51
123	Actively Tunable Visible Surface Plasmons in Bi2 Te3 and their Energy-Harvesting Applications. <i>Advanced Materials</i> , 2016 , 28, 3138-44	24	53
122	Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica. <i>Advanced Materials</i> , 2016 , 28, 7486-93	24	43
121	Highly Luminescent Heterostructured Copper-Doped Zinc Sulfide Nanocrystals for Application in Cancer Cell Labeling. <i>ChemPhysChem</i> , 2016 , 17, 2489-95	3.2	12

(2015-2016)

120	Multiphysics based 3D percolation framework model for multi-stage degradation and breakdown in high-Interfacial layer stacks 2016 ,		1
119	2016,		2
118	Real-Time Imaging of the Formation of Au-Ag Core-Shell Nanoparticles. <i>Journal of the American Chemical Society</i> , 2016 , 138, 5190-3	16.4	41
117	Silica: Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica (Adv. Mater. 34/2016). <i>Advanced Materials</i> , 2016 , 28, 7549-7549	24	9
116	Understanding the switching mechanism in RRAM using in-situ TEM 2016 ,		5
115	CAFM based spectroscopy of stress-induced defects in HfO2 with experimental evidence of the clustering model and metastable vacancy defect state 2016 ,		8
114	A plasmonic multi-logic gate platform based on sequence-specific binding of estrogen receptors and gold nanorods. <i>Nanoscale</i> , 2016 , 8, 19973-19977	7.7	14
113	Stabilization of 4H hexagonal phase in gold nanoribbons. <i>Nature Communications</i> , 2015 , 6, 7684	17.4	165
112	Statistics of retention failure in the low resistance state for hafnium oxide RRAM using a Kinetic Monte Carlo approach. <i>Microelectronics Reliability</i> , 2015 , 55, 1422-1426	1.2	10
111	Crystallization of Sputter-Deposited Amorphous (FeSi2)1\(\mathbb{B}\)Alx Thin Films. <i>Crystal Growth and Design</i> , 2015 , 15, 1692-1696	3.5	9
110	Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. <i>Nature Communications</i> , 2015 , 6, 6571	17.4	157
109	An SEM/STM based nanoprobing and TEM study of breakdown locations in HfO2/SiOx dielectric stacks for failure analysis. <i>Microelectronics Reliability</i> , 2015 , 55, 1450-1455	1.2	3
108	Spectroscopy of SILC trap locations and spatial correlation study of percolation path in the high-I and interfacial layer 2015 ,		2
107	Monte Carlo model of reset stochastics and failure rate estimation of read disturb mechanism in HfOx RRAM 2015 ,		3
106	Visible Surface Plasmon Modes in Single BillelNanoplate. <i>Nano Letters</i> , 2015 , 15, 8331-5	11.5	57
105	Multimodal plasmonics in fused colloidal networks. <i>Nature Materials</i> , 2015 , 14, 87-94	27	48
104	Probabilistic insight to possibility of new metal filament nucleation during repeated cycling of conducting bridge memory. <i>Microelectronics Reliability</i> , 2015 , 55, 1412-1416	1.2	
103	Evolution of Filament Formation in Ni/HfO2/SiOx/Si-Based RRAM Devices. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500130	6.4	27

102	Nanoplasmonics in the TEM. Microscopy and Microanalysis, 2015, 21, 2219-2220	0.5	2
101	Fast Electrical Modulation in a Plasmonic-Enhanced, V-Pit-Textured, Light-Emitting Diode. <i>Advanced Optical Materials</i> , 2015 , 3, 1703-1709	8.1	12
100	Localized Random Telegraphic Noise Study in HfO2 dielectric stacks using Scanning Tunneling Microscopy [Analysis of process and stress-induced traps 2015 ,		1
99	Encapsulated annealing: enhancing the plasmon quality factor in lithographically-defined nanostructures. <i>Scientific Reports</i> , 2014 , 4, 5537	4.9	81
98	Quantum plasmon resonances controlled by molecular tunnel junctions. <i>Science</i> , 2014 , 343, 1496-9	33.3	335
97	Au nanoparticle-modified MoS2 nanosheet-based photoelectrochemical cells for water splitting. <i>Small</i> , 2014 , 10, 3537-43	11	234
96	Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers. <i>Nanoscale</i> , 2014 , 6, 5217-22	7.7	130
95	Assessment of read disturb immunity in conducting bridge memory devices IA thermodynamic perspective. <i>Microelectronics Reliability</i> , 2014 , 54, 2295-2299	1.2	
94	Variability model for forming process in oxygen vacancy modulated high-lbased resistive switching memory devices. <i>Microelectronics Reliability</i> , 2014 , 54, 2266-2271	1.2	3
93	Impact of local structural and electrical properties of grain boundaries in polycrystalline HfO2 on reliability of SiOx interfacial layer. <i>Microelectronics Reliability</i> , 2014 , 54, 1712-1717	1.2	11
92	Impact of ionic drift and vacancy defect passivation on TDDB statistics and lifetime enhancement of metal gate high-latacks 2014,		1
91	Fabrication of suspended metal-dielectric-metal plasmonic nanostructures. <i>Nanotechnology</i> , 2014 , 25, 135303	3.4	14
90	Edge-Gold-Coated Silver Nanoprisms: Enhanced Stability and Applications in Organic Photovoltaics and Chemical Sensing. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 12459-12468	3.8	45
89	Water Splitting: Au Nanoparticle-Modified MoS2 Nanosheet-Based Photoelectrochemical Cells for Water Splitting (Small 17/2014). <i>Small</i> , 2014 , 10, 3536-3536	11	2
88	Stochastic failure model for endurance degradation in vacancy modulated HfOx RRAM using the percolation cell framework 2014 ,		5
87	Leakage current and structural analysis of annealed HfO2/La2O3 and CeO2/La2O3 dielectric stacks: A nanoscopic study. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2014 , 32, 03D125	1.3	4
86	A circuit model for plasmonic resonators. <i>Optics Express</i> , 2014 , 22, 9809-19	3.3	38
85	Nucleation dynamics of water nanodroplets. <i>Microscopy and Microanalysis</i> , 2014 , 20, 407-15	0.5	14

(2013-2014)

84	An epitaxial ferroelectric tunnel junction on silicon. <i>Advanced Materials</i> , 2014 , 26, 7185-9	24	55
83	Spatial correlation of conductive filaments for multiple switching cycles in CBRAM 2014 ,		1
82	Synthesis of Spiky AgAu Octahedral Nanoparticles and Their Tunable Optical Properties. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 16640-16649	3.8	42
81	Multi-layered liposomes as optical resonators 2013 ,		1
80	Scrolling graphene into nanofluidic channels. <i>Lab on A Chip</i> , 2013 , 13, 2874-8	7.2	51
79	Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. <i>ACS Nano</i> , 2013 , 7, 6287-96	16.7	49
78	Nanoscale phase domain structure and associated device performance of organic solar cells based on a diketopyrrolopyrrole polymer. <i>RSC Advances</i> , 2013 , 3, 20113	3.7	14
77	Study of preferential localized degradation and breakdown of HfO2/SiOx dielectric stacks at grain boundary sites of polycrystalline HfO2 dielectrics. <i>Microelectronic Engineering</i> , 2013 , 109, 364-369	2.5	34
76	Impact of local variations in high-k dielectric on breakdown and recovery characteristics of advanced gate stacks 2013 ,		2
75	Feasibility of SILC Recovery in Sub-10-ŒOT Advanced Metal Gate⊞igh-\$kappa\$ Stacks. <i>IEEE Electron Device Letters</i> , 2013 , 34, 1053-1055	4.4	6
74	Resilience of ultra-thin oxynitride films to percolative wear-out and reliability implications for high-latacks at low voltage stress. <i>Journal of Applied Physics</i> , 2013 , 114, 094504	2.5	7
73	Intrinsic nanofilamentation in resistive switching. <i>Journal of Applied Physics</i> , 2013 , 113, 114503	2.5	64
72	Facile synthesis of luminescent AgInS&ZnS solid solution nanorods. <i>Small</i> , 2013 , 9, 2689-95	11	29
71	Fowler-Nordheim tunneling induced charge transfer plasmons between nearly touching nanoparticles. <i>ACS Nano</i> , 2013 , 7, 707-16	16.7	103
70	Multiferroicity in manganite/titanate superlattices determined by oxygen pressure-mediated cation defects. <i>Journal of Applied Physics</i> , 2013 , 113, 164302	2.5	2
69	Surfactant-free sub-2 nm ultrathin triangular gold nanoframes. <i>Small</i> , 2013 , 9, 2880-6	11	62
68	The effect of high deposition energy of carbon overcoats on perpendicular magnetic recording media. <i>Applied Physics Letters</i> , 2013 , 103, 161604	3.4	2
67	Surface plasmon damping quantified with an electron nanoprobe. <i>Scientific Reports</i> , 2013 , 3, 1312	4.9	116

66	Real-time analysis of ultra-thin gate dielectric breakdown and recovery - A reality 2013,		4
65	Silicon surface passivation by aluminium oxide studied with electron energy loss spectroscopy. <i>Physica Status Solidi - Rapid Research Letters</i> , 2013 , 7, 937-941	2.5	22
64	Percolative Model and Thermodynamic Analysis of Oxygen-Ion-Mediated Resistive Switching. <i>IEEE Electron Device Letters</i> , 2012 , 33, 712-714	4.4	17
63	Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. <i>Chemistry - A European Journal</i> , 2012 , 18, 3127-31	4.8	130
62	Gold Coating of Silver Nanoprisms. Advanced Functional Materials, 2012, 22, 849-854	15.6	108
61	Role of grain boundary percolative defects and localized trap generation on the reliability statistics of high-gate dielectric stacks 2012 ,		10
60	Spin-polarized wide electron slabs in functionally graded polar oxide heterostructures. <i>Scientific Reports</i> , 2012 , 2, 533	4.9	12
59	Subthreshold characteristics of ballistic electron emission spectra. <i>Journal of Applied Physics</i> , 2012 , 111, 013701	2.5	6
58	Nanoscale physical analysis of localized breakdown events in HfO2/SiOX dielectric stacks: A correlation study of STM induced BD with C-AFM and TEM 2012 ,		1
57	Light splitting in nanoporous gold and silver. ACS Nano, 2012 , 6, 319-26	16.7	41
57 56	Light splitting in nanoporous gold and silver. <i>ACS Nano</i> , 2012 , 6, 319-26 Three-dimensional tubular arrays of MnO2NiO nanoflakes with high areal pseudocapacitance. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2419-2426	16.7	382
	Three-dimensional tubular arrays of MnO2NiO nanoflakes with high areal pseudocapacitance.	16.7	<u> </u>
56	Three-dimensional tubular arrays of MnO2NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426 Synthesis of Silver Nanoparticles with Monovalently Functionalized Self-Assembled Monolayers.	Í	<u> </u>
56 55	Three-dimensional tubular arrays of MnO2NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426 Synthesis of Silver Nanoparticles with Monovalently Functionalized Self-Assembled Monolayers. Australian Journal of Chemistry, 2012, 65, 275 The electronic barrier height of silicon native oxides at different oxidation stages. Journal of	1.2	382
565554	Three-dimensional tubular arrays of MnO2NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426 Synthesis of Silver Nanoparticles with Monovalently Functionalized Self-Assembled Monolayers. Australian Journal of Chemistry, 2012, 65, 275 The electronic barrier height of silicon native oxides at different oxidation stages. Journal of Applied Physics, 2012, 111, 054111 Triggering voltage for post-breakdown random telegraph noise in HfLaO dielectric metal gate metal-oxide-semiconductor field effect transistors and its reliability implications. Journal of Applied	1.2	382
56555453	Three-dimensional tubular arrays of MnO2NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426 Synthesis of Silver Nanoparticles with Monovalently Functionalized Self-Assembled Monolayers. Australian Journal of Chemistry, 2012, 65, 275 The electronic barrier height of silicon native oxides at different oxidation stages. Journal of Applied Physics, 2012, 111, 054111 Triggering voltage for post-breakdown random telegraph noise in HfLaO dielectric metal gate metal-oxide-semiconductor field effect transistors and its reliability implications. Journal of Applied Physics, 2012, 111, 024101 Study of charge distribution and charge loss in dual-layer metal-nanocrystal-embedded high-NSiO2	2.5 2.5	382
5655545352	Three-dimensional tubular arrays of MnO2NiO nanoflakes with high areal pseudocapacitance. Journal of Materials Chemistry, 2012, 22, 2419-2426 Synthesis of Silver Nanoparticles with Monovalently Functionalized Self-Assembled Monolayers. Australian Journal of Chemistry, 2012, 65, 275 The electronic barrier height of silicon native oxides at different oxidation stages. Journal of Applied Physics, 2012, 111, 054111 Triggering voltage for post-breakdown random telegraph noise in HfLaO dielectric metal gate metal-oxide-semiconductor field effect transistors and its reliability implications. Journal of Applied Physics, 2012, 111, 024101 Study of charge distribution and charge loss in dual-layer metal-nanocrystal-embedded high-NSiO2 gate stack. Applied Physics Letters, 2012, 100, 193109	2.5 2.5 3.4	382 9 2 1

(2011-2012)

48	Barrier height determination of Au/Oxidized GaAs/n-GaAs using ballistic electron emission spectroscopy. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2012 , 30, 011805	1.3	2	
47	Effect of surface contamination on electron tunneling in the high bias range. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 2012 , 30, 041402	2.9	3	
46	Dielectric breakdown [Recovery in logic and resistive switching in memory [Bridging the gap between the two phenomena 2012 ,		2	
45	High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 959-65	1.3	22	
44	Nanopatterning with the Helium Ion Microscope. <i>Microscopy and Microanalysis</i> , 2012 , 18, 800-801	0.5		
43	One-pot synthesis of Cu1.94S-CdS and Cu1.94S-Zn(x)Cd(1-x)S nanodisk heterostructures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2052-5	16.4	95	
42	Annular electron energy-loss spectroscopy in the scanning transmission electron microscope. <i>Ultramicroscopy</i> , 2011 , 111, 1540-6	3.1	2	
41	. IEEE Transactions on Electron Devices, 2011 , 58, 74-79	2.9	10	
40	Ternary cobalt-iron phosphide nanocrystals with controlled compositions, properties, and morphologies from nanorods and nanorice to split nanostructures. <i>Chemistry - A European Journal</i> , 2011 , 17, 5982-8	4.8	39	
39	Modified Percolation Model for Polycrystalline High-\$ kappa\$ Gate Stack With Grain Boundary Defects. <i>IEEE Electron Device Letters</i> , 2011 , 32, 78-80	4.4	28	
38	Electronic properties of ultrathin high-Idielectrics studied by ballistic electron emission microscopy. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2011 , 29, 052201	1.3	3	
37	Very Low Reset Current for an RRAM Device Achieved in the Oxygen-Vacancy-Controlled Regime. <i>IEEE Electron Device Letters</i> , 2011 , 32, 716-718	4.4	25	
36	Filamentation Mechanism of Resistive Switching in Fully Silicided High- \$kappa\$ Gate Stacks. <i>IEEE Electron Device Letters</i> , 2011 , 32, 455-457	4.4	12	
35	Oxygen-Soluble Gate Electrodes for Prolonged High-\$ kappa\$ Gate-Stack Reliability. <i>IEEE Electron Device Letters</i> , 2011 , 32, 252-254	4.4	17	
34	Field emission enhancement and microstructural changes of carbon films by single pulse laser irradiation. <i>Carbon</i> , 2011 , 49, 1018-1024	10.4	26	
33	Plasma density induced formation of nanocrystals in physical vapor deposited carbon films. <i>Carbon</i> , 2011 , 49, 1733-1744	10.4	30	
32	Physical analysis of breakdown in high-Imetal gate stacks using TEM/EELS and STM for reliability enhancement (invited). <i>Microelectronic Engineering</i> , 2011 , 88, 1365-1372	2.5	16	
31	Evidence for compliance controlled oxygen vacancy and metal filament based resistive switching mechanisms in RRAM. <i>Microelectronic Engineering</i> , 2011 , 88, 1124-1128	2.5	4 0	

30	Using post-breakdown conduction study in a MIS structure to better understand the resistive switching mechanism in an MIM stack. <i>Nanotechnology</i> , 2011 , 22, 455702	3.4	12
29	Uncorrelated multiple conductive filament nucleation and rupture in ultra-thin high-Idielectric based resistive random access memory. <i>Applied Physics Letters</i> , 2011 , 99, 093502	3.4	23
28	Threshold shift observed in resistive switching in metal-oxide-semiconductor transistors and the effect of forming gas anneal. <i>Applied Physics Letters</i> , 2011 , 99, 232909	3.4	4
27	Random telegraph noise reduction in metal gate high-latacks by bipolar switching and the performance boosting technique 2011 ,		1
26	Chemical insight into origin of forming-free resistive random-access memory devices. <i>Applied Physics Letters</i> , 2011 , 99, 133504	3.4	12
25	Grain boundary assisted degradation and breakdown study in cerium oxide gate dielectric using scanning tunneling microscopy. <i>Applied Physics Letters</i> , 2011 , 98, 072902	3.4	28
24	Direct visualization and in-depth physical study of metal filament formation in percolated high-I dielectrics. <i>Applied Physics Letters</i> , 2010 , 96, 022903	3.4	29
23	Role of oxygen vacancies in HfO2-based gate stack breakdown. <i>Applied Physics Letters</i> , 2010 , 96, 17290	13.4	33
22	Resistive switching in NiSi gate metal-oxide-semiconductor transistors. <i>Applied Physics Letters</i> , 2010 , 97, 202904	3.4	25
21	Localized degradation and breakdown study of cerium-oxide high-母ate dielectric material using scanning tunneling microscopy 2010 ,		2
20	Study of ion beam damage on FIB prepared TEM samples 2010 ,		2
19	The distribution of chemical elements in Al- or La-capped high-limetal gate stacks. <i>Applied Physics Letters</i> , 2010 , 97, 103504	3.4	23
18	Postbreakdown Gate-Current Low-Frequency Noise Spectrum as a Detection Tool for High- \$kappa\$ and Interfacial Layer Breakdown. <i>IEEE Electron Device Letters</i> , 2010 , 31, 1035-1037	4.4	5
17	New insight into the TDDB and breakdown reliability of novel high-lgate dielectric stacks 2010 ,		2
16	\$nhbox{-ZnO}/nhbox{-GaAs}\$ Heterostructured White Light-Emitting Diode: Nanoscale Interface Analysis and Electroluminescence Studies. <i>IEEE Transactions on Electron Devices</i> , 2010 , 57, 129-133	2.9	13
15	Quantitative, nanoscale mapping of sp2 percentage and crystal orientation in carbon multilayers. <i>Carbon</i> , 2009 , 47, 94-101	10.4	20
14	Observation of switching behaviors in post-breakdown conduction in NiSi-gated stacks 2009,		9
13	Nanoscale band gap spectroscopy on ZnO and GaN-based compounds with a monochromated electron microscope. <i>Applied Physics Letters</i> , 2009 , 95, 101110	3.4	19

LIST OF PUBLICATIONS

12	Applications and theoretical simulation of low-loss electron energy-loss spectra. <i>Materials Science and Technology</i> , 2008 , 24, 651-659	1.5	12
11	Theoretical interpretation of electron energy-loss spectroscopic images. <i>AIP Conference Proceedings</i> , 2008 ,	O	3
10	Plasmon resonances and electron phase shifts near Au nanospheres. <i>Applied Physics Letters</i> , 2008 , 93, 101909	3.4	8
9	Simulation of Atomic Resolution Images in STEM. <i>Microscopy and Microanalysis</i> , 2008 , 14, 922-923	0.5	
8	Optimizing EELS acquisition. <i>Ultramicroscopy</i> , 2008 , 108, 837-46	3.1	60
7	Mapping surface plasmons at the nanometre scale with an electron beam. <i>Nanotechnology</i> , 2007 , 18, 165505	3.4	240
6	New developments in electron energy loss spectroscopy. <i>Microscopy Research and Technique</i> , 2007 , 70, 211-9	2.8	15
5	Two-dimensional mapping of chemical information at atomic resolution. <i>Physical Review Letters</i> , 2007 , 99, 086102	7.4	217
4	Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. <i>Ultramicroscopy</i> , 2006 , 106, 1024-32	3.1	232
3	Measurements of composition and electronic structure in an operating light-emitting diode using analytical electron microscopy. <i>Applied Physics Letters</i> , 2004 , 84, 1371-1373	3.4	2
2	Light-Emitting V-Pits: An Alternative Approach toward Luminescent Indium-Rich InGaN Quantum Dots. <i>ACS Photonics</i> ,	6.3	2
1	Spontaneous Atomic Sites Formation in Wurtzite CoO Nanorods for Robust CO 2 Photoreduction. Advanced Functional Materials,2109693	15.6	6