

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6566527/publications.pdf Version: 2024-02-01

λλει Ολ

#	Article	IF	CITATIONS
1	A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Composites Part B: Engineering, 2019, 166, 204-212.	12.0	158
2	Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. Journal of Alloys and Compounds, 2009, 480, 870-873.	5.5	148
3	Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. Journal of Alloys and Compounds, 2019, 795, 501-512.	5.5	140
4	Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites. Ceramics International, 2018, 44, S84-S87.	4.8	109
5	Strong magnetoelectric coupling effect in BaTiO ₃ @CoFe ₂ O ₄ magnetoelectric multiferroic fluids. Nanoscale, 2018, 10, 11750-11759.	5.6	97
6	Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceramics International, 2011, 37, 3643-3650.	4.8	80
7	Photovoltaic enhancement based on improvement of ferroelectric property and band gap in Ti-doped bismuth ferrite thin films. Journal of Alloys and Compounds, 2014, 617, 240-246.	5.5	80
8	Effect of hafnium on the microstructure, dielectric and ferroelectric properties of Ba[Zr0.2Ti0.8]O3 ceramics. Ceramics International, 2012, 38, 3367-3375.	4.8	71
9	Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method. Ceramics International, 2013, 39, 8729-8736.	4.8	70
10	Electric Field–Induced Magnetization Rotation in Magnetoelectric Multiferroic Fluids. Advanced Electronic Materials, 2018, 4, 1800030.	5.1	69
11	Dielectric properties, microstructure and diffuse transition of Ni-doped Ba(Zr0.2Ti0.8)O3 ceramics. Journal of Alloys and Compounds, 2009, 487, 668-674.	5.5	66
12	Effect of Mn doping on the dielectric properties of BaZr0.2Ti0.8O3 ceramics. Journal of Materials Science: Materials in Electronics, 2010, 21, 317-325.	2.2	63
13	Dielectric properties and microstructure of Mg doped barium titanate ceramics. Advances in Applied Ceramics, 2011, 110, 181-185.	1.1	60
14	Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics. Journal of Alloys and Compounds, 2013, 554, 64-71.	5.5	60
15	Enhanced piezoelectric response of (Ba,Ca)(Ti, Zr)O3 ceramics by super large grain size and construction of phase boundary. Journal of Alloys and Compounds, 2019, 794, 542-552.	5.5	60
16	Effects of Nd-doping on optical and photovoltaic properties of barium titanate thin films prepared by sol–gel method. Materials Research Bulletin, 2013, 48, 3092-3097.	5.2	53
17	Micro-Area Ferroelectric, Piezoelectric and Conductive Properties of Single BiFeO3 Nanowire by Scanning Probe Microscopy. Nanomaterials, 2019, 9, 190.	4.1	53
18	Preparation and optical properties of barium titanate thin films. Physica B: Condensed Matter, 2011, 406, 3583-3587.	2.7	52

#	Article	IF	CITATIONS
19	Study of structural, optical and enhanced multiferroic properties of Ni doped BFO thin films synthesized by sol-gel method. Journal of Alloys and Compounds, 2020, 831, 154857.	5.5	47
20	Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. Journal of Materials Science: Materials in Electronics, 2018, 29, 16226-16237.	2.2	45
21	Microstructure, dielectric properties and diffuse phase transition of barium stannate titanate ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 265-272.	2.2	43
22	Effect of Magnetic Phase on Structural and Multiferroic Properties of Ni1â^'xZnxFe2O4/BaTiO3 Composite Ceramics. Journal of Electronic Materials, 2019, 48, 4806-4817.	2.2	42
23	A comparative study of the dielectric, ferroelectric and anomalous magnetic properties of Mn0.5Mg0.5Fe2O4/Ba0.8Sr0.2Ti0.9Zr0.1O3 composite ceramics. Materials Chemistry and Physics, 2019, 232, 428-437.	4.0	36
24	Tunable photovoltaic effects induced by different cooling oxygen pressure in Bi0.9La0.1FeO3 thin films. Journal of Alloys and Compounds, 2015, 624, 1-8.	5.5	35
25	Synergistic effect of grain size and phase boundary on energy storage performance and electric properties of BCZT ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 9167-9175.	2.2	35
26	Electric Control of the Hall effect in Pt/Bi0.9La0.1FeO3 bilayers. Scientific Reports, 2016, 6, 20330.	3.3	34
27	Enhanced the dielectric relaxation characteristics of BaTiO3 ceramic doped by BiFeO3 and synthesized by the microwave sintering method. Materials Chemistry and Physics, 2020, 250, 123034.	4.0	34
28	Structure, dielectric, piezoelectric, antiferroelectric and magnetic properties of CoFe2O4–PbZr0.52Ti0.48O3 composite ceramics. Materials Chemistry and Physics, 2020, 249, 123144.	4.0	33
29	Anomalous Magnetoelectric Coupling Effect of CoFe ₂ O ₄ –BaTiO ₃ Binary Mixed Fluids. ACS Applied Electronic Materials, 2019, 1, 1120-1132.	4.3	31
30	Microstructure, dielectric and ferroelectric properties of xBaZr0.2Ti0.8O3-(1â^'x)BiFeO3 solid solution ceramics. Materials Research Bulletin, 2014, 50, 259-267.	5.2	30
31	The effects of grain size on electrical properties and domain structure of BiFeO3 thin films by sol–gel method. Journal of Materials Science: Materials in Electronics, 2015, 26, 9495-9506.	2.2	30
32	Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba,Ca)(Ti,Zr)O3 ceramics. Journal of Materials Science, 2020, 55, 9972-9992.	3.7	29
33	Effects of sintering method and BiFeO3 dopant on the dielectric and ferroelectric properties of BaTiO3–BiYbO3 based solid solution ceramics. Ceramics International, 2018, 44, 16880-16889.	4.8	28
34	The Study of Microstructure, Dielectric and Multiferroic Properties of (1 â~` x) Co0.8Cu0.2Fe2O4-xBa0.6Sr0.4TiO3 Composites. Journal of Electronic Materials, 2019, 48, 386-400.	2.2	27
35	Thickness Dependence of Photovoltaic Effect in BiFeO3 Thin Films Based on Asymmetric Structures. Journal of Electronic Materials, 2017, 46, 2373-2378.	2.2	26
36	Electric fatigue of BCZT ceramics sintered in different atmospheres. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	26

#	Article	IF	CITATIONS
37	Effect of Samarium on the Microstructure, Dielectric and Ferroelectric Properties of Barium Titanate Ceramics. Integrated Ferroelectrics, 2012, 140, 92-103.	0.7	25
38	Effect of processing parameters on the structural, electrical and magnetic properties of BFO thin film synthesized via RF magnetron sputtering. Journal of Alloys and Compounds, 2016, 684, 510-515.	5.5	24
39	Microstructure, enhanced electric and magnetic properties of Bi0.9La0.1FeO3 ceramics prepared by microwave sintering. Journal of Alloys and Compounds, 2019, 774, 61-68.	5.5	23
40	Dielectric, ferroelectric and magnetoelectric properties of in-situ synthesized CoFe2O4/BaTiO3 composite ceramics. Ceramics International, 2020, 46, 9154-9160.	4.8	22
41	Voltage tunable Ba0.6Sr0.4TiO3 thin films and coplanar phase shifters. Thin Solid Films, 2008, 516, 5258-5261.	1.8	21
42	Magnetocapacitance and magnetoelectric coupling effect of Ni _{0.5} Cu _{0.5} Fe ₂ O ₄ /BaTiO ₃ mixed multiferroic fluids. Materials Research Express, 2019, 6, 026308.	1.6	21
43	Effect of holding time on microstructure, ferroelectric and energy-storage properties of Pb0.925La0.05Zr0.95Ti0.05O3@SiO2 ceramics. Journal of Alloys and Compounds, 2022, 896, 162932.	5.5	21
44	Dielectric properties, microstructure and diffuse transition of Al-doped Ba(Zr0.2Ti0.8)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2010, 21, 796-803.	2.2	20
45	Microstructures, dielectric and ferroelectric properties of BaHfxTi1â^'xO3 ceramics. Journal of Alloys and Compounds, 2012, 544, 82-86.	5.5	20
46	Enhanced multiferroic properties of Co0.5Ni0.5Fe2O4/Ba0.85Sr0.15TiO3 composites based on particle size effect. Journal of Materials Science: Materials in Electronics, 2019, 30, 10256-10273.	2.2	19
47	Synthesis and morphology of Ba(Zr0.20Ti0.80)O3 powders obtained by sol–gel method. Journal of Sol-Gel Science and Technology, 2011, 57, 149-156.	2.4	18
48	Enhanced ferroelectric and piezoelectric responses of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics by Tm3+ amphoteric substitution. Materials Chemistry and Physics, 2020, 252, 123242.	4.0	18
49	Enhanced Electric Field-Induced Strain Properties in Lead-Free BF-BT-Based Piezoceramics by Local Structure Inhomogeneity. ACS Sustainable Chemistry and Engineering, 2022, 10, 1277-1286.	6.7	17
50	Effect of Ba Substitution on Microstructure, Dielectric and Ferroelectric Properties of BiFeO ₃ Ceramics. Ferroelectrics, 2015, 478, 11-17.	0.6	15
51	Dielectric and ferroelectric properties of LaFeO3 particles derived from metal organic frameworks precursor. Ceramics International, 2019, 45, 1825-1830.	4.8	15
52	Microstructure, dielectric and ferroelectric properties of (1â^'x) BaTiO3–xBiYbO3 ceramics fabricated by conventional and microwave sintering methods. Journal of Materials Science: Materials in Electronics, 2018, 29, 20017-20032.	2.2	14
53	Enhancement of magnetoelectric properties and coupling coefficient of Co1â^xCuxFe2O4/Ba0.8Sr0.2TiO3 composite liquid. Journal of Materials Science: Materials in Electronics, 2020, 31, 885-895.	2.2	14
54	Synthesis of self-assembly BaTiO3 nanowire by sol–gel and microwave method. Applied Surface Science, 2009, 255, 9444-9446.	6.1	13

#	Article	IF	CITATIONS
55	Effects of BiAlO3 dopant and sintering method on microstructure, dielectric relaxation characteristic and ferroelectric properties of BaTiO3-based ceramics. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	13
56	Effect of Strontium Doping on the Microstructures and Dielectric Properties of Lanthanum Titanate Ceramics. Transactions of the Indian Ceramic Society, 2014, 73, 307-311.	1.0	12
57	Effect of particle size on magnetodielectric and magnetoelectric coupling effect of CoFe2O4@BaTiO3 composite fluids. Journal of Materials Science: Materials in Electronics, 2020, 31, 9026-9036.	2.2	12
58	LEAKAGE CURRENT CHARACTERISTICS OF Pt/Ba0.6Sr0.4TiO3/Pt THIN-FILM CAPACITORS. Integrated Ferroelectrics, 2007, 91, 112-118.	0.7	11
59	Influence of Lanthanum on Microstructure and Dielectric Properties of Barium Titanate Ceramics by Solid State Reaction. Advanced Materials Research, 2011, 412, 275-279.	0.3	11
60	Structural and Magnetic Properties of Bismuth Ferrite Nanopowders Prepared via Sol-Gel Method. Ferroelectrics, 2014, 460, 157-161.	0.6	11
61	Enhanced ferroelectric photovoltaic effect based on converging depolarization field. Materials Research Bulletin, 2016, 84, 93-98.	5.2	11
62	Effects of Sn doping on the microstructure and dielectric and ferroelectric properties of Ba(Zr0.2Ti0.8)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2017, 28, 8177-8185.	2.2	11
63	Microstructure, enhanced piezoelectric, optical and magnetic properties of Mn substituted BiFeO3 film synthesized by chemical method. Journal of Materials Science: Materials in Electronics, 2018, 29, 6870-6878.	2.2	11
64	Microstructure, Enhanced Relaxor-Like Behavior and Electric Properties of (Ba0.85Ca0.15)(Zr0.1â^'xHfxTi0.9)O3 Ceramics. Journal of Electronic Materials, 2019, 48, 3239-3247.	2.2	11
65	A comparative study on the structural, dielectric, ferroelectric and magnetic properties of CoFe2O4/PbZr0.52Ti0.48O3 multiferroic composite with different molar ratios. Journal of Physics Communications, 2019, 3, 125010.	1.2	11
66	Effect of volume fraction on magnetoelectric coupling effect of Co0.1Cu0.9Fe2O4/Ba0.8Sr0.2TiO3 composite liquid. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	11
67	Effects of sintering temperature and holding time on the microstructure and electric properties of Ba(Zr0.3Ti0.7)O3 ceramics. Processing and Application of Ceramics, 2018, 12, 45-55.	0.8	11
68	RELAXOR BEHAVIOR OF BaZr0.2Ti0.8O3 CERAMICS WITH DIFFERENT GRAINS. Integrated Ferroelectrics, 2008, 104, 1-7.	0.7	10
69	MICROSTRUCTURE AND DIELECTRIC PROPERTIES OF BARIUM ZIRCONATE TITANATE CERAMICS BY TWO METHODS. Integrated Ferroelectrics, 2010, 113, 83-94.	0.7	10
70	Switchable photovoltaic effect in Au/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 heterostructures. Materials Chemistry and Physics, 2016, 181, 277-283.	4.0	10
71	Microstructure and ferroelectric properties of (Ca1â°'xSrx)3(Ti1â°'yMny)2O7 ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 2177-2185.	2.2	10
72	Effect of sintering temperature on magnetoelectric properties of PbTiO3/NiFe2O4 composite ceramics. Journal of Asian Ceramic Societies, 2020, 8, 1206-1215.	2.3	10

#	Article	IF	CITATIONS
73	Effects of Hf4+ substitute on the enhanced electrostrain properties of 0.7BiFeO3-0.3BaTiO3-based lead-free piezoelectric ceramics. Ceramics International, 2022, 48, 10539-10546.	4.8	10
74	MICROSTRUCTURE AND FERROELECTRIC PROPERTIES OF BaZr0.2Ti0.8O3 FILMS PREPARED BY SOL-GEL. Integrated Ferroelectrics, 2009, 107, 24-30.	0.7	9
75	Preparation and electric properties of BiFeO3 film by electrophoretic deposition. Journal of Alloys and Compounds, 2014, 605, 21-28.	5.5	9
76	Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1â^'x)BiFeO3 solid solution ceramics. Journal of Materials Science: Materials in Electronics, 2015, 26, 322-330.	2.2	9
77	Effect of annealing atmosphere on structural and multiferroic properties of BiFeO3 thin film prepared by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2019, 30, 16502-16509.	2.2	9
78	Effect of Ti doping on the dielectric, ferroelectric and magnetic properties of Bi _{0.86} La _{0.08} Sm _{0.14} FeO ₃ ceramics. Materials Research Express, 2019, 6, 106317.	1.6	9
79	Enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a two-stage sintering. Materials Chemistry and Physics, 2021, 258, 124001.	4.0	9
80	Enhanced energy storage performance of BNT-ST based ceramics under low electric field via domain engineering. Ceramics International, 2022, 48, 31381-31388.	4.8	9
81	Coplanar Phase Shifters Based on Ferroelectric Thin Films. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 229-235.	0.6	8
82	Microstructures and dielectric properties of BaZr0.2Ti0.8O3ceramics. Journal of Physics: Conference Series, 2009, 152, 012075.	0.4	8
83	Microstructure and electric properties of strontium niobate ceramics. Ceramics International, 2012, 38, 2601-2603.	4.8	8
84	Effects of Sintering Method and BiAlO ₃ Dopant on Dielectric Relaxation and Energy Storage Properties of BaTiO ₃ –BiYbO ₃ Ceramics. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900721.	1.8	8
85	Remarkable enhancement in hybrid improper ferroelectricity of Ca3Ti2O7 ceramics by a simple sol-gel process. Materials Letters, 2020, 278, 128447.	2.6	8
86	Microstructure, dielectric and ferroelectric properties of barium zirconate titanate ceramics prepared by microwave sintering. Journal of Materials Science: Materials in Electronics, 2014, 25, 4841-4850.	2.2	7
87	Effects of annealing atmosphere on microstructure, electrical properties and domain structure of BiFeO3 thin films. Journal of Materials Science: Materials in Electronics, 2017, 28, 12039-12047.	2.2	7
88	Study on magnetoelectric properties of Ni0.5Zn0.5Fe2O4/Ba0.8Sr0.2TiO3 composite ceramics based on Bi2O3 as combustion aid. Journal of Materials Science: Materials in Electronics, 2020, 31, 4073-4082.	2.2	7
89	Dielectric, ferroelectric and magnetic properties of Bi0.78La0.08Sm0.14Fe0.85Ti0.15O3 ceramics prepared at different sintering conditions. Processing and Application of Ceramics, 2018, 12, 394-402.	0.8	7
90	EFFECT OF SINTERING TEMPERATURE ON DIFFUSE PHASE TRANSITION OF BARIUM ZIRCONATE TITANATE CERAMICS. Integrated Ferroelectrics, 2009, 105, 1-10.	0.7	6

#	Article	IF	CITATIONS
91	Effect of Mn doping on the dielectric properties of BaTi0.9Sn0.1O3 ceramics. Journal of Materials Science: Materials in Electronics, 2011, 22, 47-51.	2.2	6
92	Mechanism of ferroelectric resistive switching in Bi0.9La0.1FeO3 thin films. Thin Solid Films, 2015, 583, 13-18.	1.8	6
93	The growth, enhanced optical and magnetic response of BiFeO3 nanorods synthesized by hydrothermal method. Journal of Materials Science: Materials in Electronics, 2016, 27, 8242-8246.	2.2	6
94	The electronic structure and optical properties of Ca ₃ (Mn1â^'xTi _{<i>x</i>}) ₂ O ₇ from first-principle calculations. Journal of Advanced Dielectrics, 2019, 09, 1950007.	2.4	6
95	A comparative study on the dielectric and multiferroic properties of Co0.5Zn0.5Fe2O4/Ba0.8Sr0.2TiO3 composite ceramics. Processing and Application of Ceramics, 2019, 13, 349-359.	0.8	6
96	Pluronic <scp>F127</scp> â€modified <scp>BaTiO₃</scp> for ceramic/polymer nanocomposite dielectric capacitor with enhanced energy storage performance. Polymer Engineering and Science, 2022, 62, 1811-1822.	3.1	6
97	Microstructure and Dielectric Properties of La-doped Barium Titanate Hafnate Ceramics. Integrated Ferroelectrics, 2012, 139, 7-13.	0.7	5
98	Dielectric Properties and Structures of Zn-doped Barium Zirconate Titanate Films. Integrated Ferroelectrics, 2014, 150, 66-74.	0.7	5
99	Resistance switching mechanism of La0.8Sr0.2MnO3â [∽] Î′ thin films. Physica B: Condensed Matter, 2016, 483, 99-102.	2.7	5
100	A quasiâ€ l inear piezoelectric strain behavior of [001] textured rhombohedral PMN–24%PT ceramic. Journal of the American Ceramic Society, 2020, 103, 6226-6236.	3.8	5
101	Influence of Co ion doping on the microstructure, magnetic and dielectric properties of Ni1-xCoxFe2O4 ceramics. Processing and Application of Ceramics, 2018, 12, 335-341.	0.8	5
102	Cooling rate-dependent microstructure and electrical properties of BCZT ceramics. Materials Science in Semiconductor Processing, 2022, 150, 106950.	4.0	5
103	MODEL FOR GRAIN SIZE EFFECT ON DIELECTRIC NONLINEARITY OF FERROELECTRICS. Integrated Ferroelectrics, 2007, 92, 114-122.	0.7	4
104	Effect of annealing on leakage current characteristics of Pt/Ba0.6Sr0.4TiO3/Pt thin-film capacitors. Journal of Materials Science: Materials in Electronics, 2007, 18, 453-456.	2.2	4
105	Effect of vanadium doping on the electric properties of barium titanate hafnate ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 2438-2444.	2.2	4
106	Effect of Sintering Temperature on the Microstructures and Ferroelectric Properties of Bismuth Ferrite Ceramics. Ferroelectrics, 2013, 445, 114-120.	0.6	4
107	Effect of Ta Doping on the Microstructure, Dielectric and Ferroelectric Properties of Sr2Nb2O7Ceramics. Ferroelectrics, 2014, 467, 165-172.	0.6	4
108	Effect of molar ratio on the microstructure, dielectric and electromagnetic properties of BaTiO3/CoFe2O4 ceramic. Materials Research Express, 2019, 6, 116317.	1.6	4

#	Article	IF	CITATIONS
109	Microstructure and Dielectric Properties of Ta-doped La ₂ Ti ₂ O ₇ Ceramics. Integrated Ferroelectrics, 2013, 141, 45-49.	0.7	3
110	Transport properties and anomalous fatigue effect of Ag/Bi 0.9 La 0.1 FeO 3 /La 0.7 Sr 0.3 MnO 3 heterostructures. Chinese Physics B, 2014, 23, 097702.	1.4	3
111	Strong magnetic properties and enhanced coupling effect by tailoring the molar ratio in BaTiO3/Co0.5Mg0.3Zn0.2Fe2O4 composite ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 11563-11575.	2.2	3
112	Optimization of sintering process and enhanced hybrid improper ferroelectricity of Ca3Ti2O7 ceramics fabricated by an acetic acid sol–gel method. Journal of Materials Science: Materials in Electronics, 2021, 32, 24328-24341.	2.2	3
113	Barium Zirconium Titanate Powders Prepared by Sol–Gel Method. Advanced Materials Research, 2011, 412, 86-89.	0.3	2
114	Bismuth Ferrite Nanopowders Prepared by Sol-Gel. Advanced Materials Research, 2011, 412, 142-145.	0.3	2
115	Effect of Hf Doping on the Dielectric Properties of Barium Zirconate Titanate Ceramics. Materials Science Forum, 0, 687, 263-268.	0.3	2
116	Effect of Calcination Temperature on the Microstructures of Barium Titanate Hafnate Nanopowders Prepared by the Sol-gel Process. Integrated Ferroelectrics, 2012, 139, 20-25.	0.7	2
117	Effect of Annealing Temperature on Properties of Barium Zirconium Titanate Thin Films Deposited by Sol-Gel Method. Integrated Ferroelectrics, 2012, 140, 42-48.	0.7	2
118	Ferroelectric and Photovoltaic Properties of Mn-Doped Bismuth Ferrite Thin Films. Materials Science Forum, 0, 815, 135-140.	0.3	2
119	Effect of annealing temperature on crystalline structure and domains configuration of BiFeO3films. Ferroelectrics, 2018, 536, 122-131.	0.6	2
120	Effects of Sintering Method and BaTiO3 Dopant on the Microstructure and Electric Properties of Bi (Fe0.9Al0.05Yb0.05) O3-Based Ceramics. Journal of Electronic Materials, 2020, 49, 2608-2616.	2.2	2
121	Influence of molar ratio on dielectric, ferroelectric and magnetic properties of Co0.5Mg0.5Fe2O4/Ba0.85Sr0.15TiO3 composite ceramics. Processing and Application of Ceramics, 2019, 13, 257-268.	0.8	2
122	Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
123	The Band Structure and Electronic Density of States of Thermoelectric Co-Doped Magnesium Silicide. Materials Science Forum, 0, 687, 194-198.	0.3	1
124	Effect of Zn Doping on the Microstructures and Dielectric Properties of BaTi _{0.9} Sn _{0.1} O ₃ Ceramics. Ferroelectrics, 2011, 413, 231-237.	0.6	1
125	Microstructure and Dielectric Properties of BaTiO ₃ -Based Ferroelectric Materials. Materials Science Forum, 2011, 687, 133-137.	0.3	1
126	The Electronic Structure of Hf-Doped Barium Titanate. Ferroelectrics, 2012, 432, 1-7.	0.6	1

#	Article	IF	CITATIONS
127	Microstructure and Electric Properties of Strontium Lanthanum Niobate Ceramics. Ferroelectrics, 2012, 432, 8-13.	0.6	1
128	Microstructure and Ferroelectric Properties of Ta-Doped Barium Titanate Hafnate Ceramics. Ferroelectrics, 2012, 432, 49-54.	0.6	1
129	Effect of Zr doping on the microstructure and electric properties of BaHf0.1Ti0.9O3 ceramics. Journal of Materials Science: Materials in Electronics, 2013, 24, 1303-1307.	2.2	1
130	The Influence of Sintering Temperature on the Microstructure and Electrical Properties of BiFeO ₃ Ceramics. Key Engineering Materials, 2014, 602-603, 942-946.	0.4	1
131	Microstructures and Dielectric Properties of BaHf _{0.1} Ti _{0.9} O ₃ Ceramics Prepared Using Conventional and Microwave Sintering Methods. Ferroelectrics, 2014, 467, 78-84.	0.6	1
132	Microstructure and Dielectric Properties of (Ba, Ta) Co-Doped Sr ₂ Nb ₂ O ₇ Ceramics. Materials Science Forum, 0, 815, 125-128.	0.3	1
133	Sol-Gel Synthesis and Characterization of (1– <i>x</i> – <i>y</i>)BiYbO ₃ - <i>x</i> LiNbO ₃ - <i>y</i> BaTiO ₃ Ceramics. Transactions of the Indian Ceramic Society, 2016, 75, 220-224.	1.0	1
134	Enhanced photovoltaic effect of La0.8Sr0.2MnO3â~ʾĨ´ thin films based on electric field training. Materials Letters, 2016, 166, 5-8.	2.6	1
135	Study on the structure and properties of (1-x) BiYbO3-xBaTiO3 ceramics synthesized by sol–gel method. Ferroelectrics, 2017, 507, 127-138.	0.6	1
136	Microstructure and Electric Properties of (Sr1â^'xCax)3Sn2O7 Ceramics with Ruddlesden-Popper Structure. , 2018, , 189-197.		1
137	Effects of Sintering Temperature on Microstructure, Electric Properties of Ba0.7Sr0.3TiO3 Ceramics. , 2018, , 587-598.		1
138	Photovoltaic effect in rhombohedral and tetragonal phase BiFeO3 ferroelectric thin films. Integrated Ferroelectrics, 2018, 192, 146-153.	0.7	1
139	Microstructure, dielectric and enhanced multiferroic properties of Fe3O4/PbZr0.52Ti0.48O3 composite ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30, 12295-12306.	2.2	1
140	Effects of glass additives on microstructure, dielectric and ferroelectric properties of BaTiO3–BiYbO3 based ceramics. Materials Research Express, 2019, 6, 086319.	1.6	1
141	Influence of IrO2 addition on magnetoelectric properties of Ni0.5Zn0.5Fe2O4/Ba0.8Sr0.2TiO3 composite ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31, 2436-2445.	2.2	1
142	Effect of solution concentration on magnetoelectric properties of barium ferrite ceramics. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	1
143	Effect of particle size of ferroelectric phase on multiferroic properties of MnFe2O4–PbZr0.52Ti0.48O3 multiferroic liquid. Journal of Materials Science: Materials in Electronics, 0, , .	2.2	1
144	MODEL FOR INTERFACE EFFECT ON DIELECTRIC NONLINEARITY OF FERROELECTRIC FILMS. Integrated Ferroelectrics, 2007, 91, 62-72.	0.7	0

#	Article	IF	CITATIONS
145	Corrosion Resistance of Modified Silane Films Formed on AZ31 Magnesium Alloys. Materials Science Forum, 0, 686, 21-25.	0.3	0
146	Effect of sol concentration on the microstructures of barium hafnate titanate nanopowders. International Journal of Materials Research, 2012, 103, 1400-1403.	0.3	0
147	Development Practice of LCR Automatic Test System Based on Agilent E4980A. Applied Mechanics and Materials, 2012, 190-191, 78-82.	0.2	0
148	Effect of Mn doping on the microstructure and dielectric properties of BaHf _{0.1} Ti _{0.9} O ₃ ceramics. International Journal of Materials Research, 2013, 104, 1247-1253.	0.3	0
149	Effects of Microwave Sintering Time on Microstructure, Dielectric, Ferroelectric Properties of Barium Zirconate Titanate Ceramics. Key Engineering Materials, 2014, 602-603, 786-790.	0.4	Ο
150	Effects of ZnO Doping on Microstructure, Dielectric and Ferroelectric Properties of La ₂ Ti ₂ O ₇ Ceramics. Key Engineering Materials, 0, 602-603, 719-722.	0.4	0
151	Structural and Dielectric Properties of <i>X</i> BaZr _{0.2} Ti _{0.8} O ₃ -(1-< Solid Solution Ceramics. Materials Science Forum, 0, 787, 261-266.	;i& gt;x <	/i>)BiFeO8
152	Anomalous Hall effect based on Pt/Bi0.9La0.1FeO3bilayers. Japanese Journal of Applied Physics, 2016, 55, 045801.	1.5	0
153	Influences of La on Optical and Electric Properties of BiFeO3 Thin Films. , 2018, , 171-180.		Ο
154	Regulation of the microstructural and optical properties of bismuth ferrite nanowires by mineralizer concentration. International Journal of Materials Research, 2018, 109, 573-576.	0.3	0
155	Effects of sintering time on microstructure and electric properties of Ba0.7Sr0.3TiO3 ceramics. Ferroelectrics, 2019, 551, 5-16.	0.6	0
156	Microstructural Regulation and Optical Performance of Bismuth Ferrite Nanowires by Precipitant. , 2018, , 199-205.		0
157	Effect of sintering temperatures on the magnetoelectric properties of Bi0.78La0.08Sm0.14Fe0.85Ti0.15O3 ceramics. Processing and Application of Ceramics, 2022, 16, 89-96.	0.8	0
158	Dielectric, ferroelectric and piezoelectric behaviors of thulium-doped KNN ceramics fabricated by microwave sintering. Journal of Materials Science: Materials in Electronics, 2022, 33, 17258-17271.	2.2	0