Xiaoliang Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6566197/publications.pdf

Version: 2024-02-01

759233 752698 19 636 12 20 h-index citations g-index papers 21 21 21 1223 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Global Change Biology, 2017, 23, 2874-2886.	9.5	135
2	Protected areas' role in climate-change mitigation. Ambio, 2016, 45, 133-145.	5 . 5	71
3	Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest. Agricultural and Forest Meteorology, 2018, 252, 75-87.	4.8	59
4	Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 2019, 10, 5434.	12.8	59
5	Comparison of total emitted solar-induced chlorophyll fluorescence (SIF) and top-of-canopy (TOC) SIF in estimating photosynthesis. Remote Sensing of Environment, 2020, 251, 112083.	11.0	45
6	Comparison of Phenology Estimated from Reflectance-Based Indices and Solar-Induced Chlorophyll Fluorescence (SIF) Observations in a Temperate Forest Using GPP-Based Phenology as the Standard. Remote Sensing, 2018, 10, 932.	4.0	38
7	Land carbon sequestration within the conterminous United States: Regional―and stateâ€level analyses. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 379-398.	3.0	33
8	The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States. Global Change Biology, 2018, 24, 617-630.	9.5	28
9	Modeling methane emissions from the Alaskan Yukon River basin, 1986–2005, by coupling a largeâ€scale hydrological model and a processâ€based methane model. Journal of Geophysical Research, 2012, 117, .	3.3	24
10	A Contemporary Carbon Balance for the Northeast Region of the United States. Environmental Science & Environmental Science & Technology, 2013, 47, 13230-13238.	10.0	24
11	Potential of Sunâ€Induced Chlorophyll Fluorescence for Indicating Mangrove Canopy Photosynthesis. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006159.	3.0	13
12	Advantage of multi-band solar-induced chlorophyll fluorescence to derive canopy photosynthesis in a temperate forest. Agricultural and Forest Meteorology, 2019, 279, 107691.	4.8	12
13	A largeâ€scale methane model by incorporating the surface water transport. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1657-1674.	3.0	9
14	Increasing Methane Emissions From Natural Land Ecosystems due to Sea‣evel Rise. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1756-1768.	3.0	9
15	Simulation of solar-induced chlorophyll fluorescence in a heterogeneous forest using 3-D radiative transfer modelling and airborne LiDAR. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 191, 1-17.	11.1	7
16	Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO ₂ Concentration Data With the Global Carbon Assimilation System (GCAS). Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3218-3237.	3.0	6
17	Simulation-Based Evaluation of the Estimation Methods of Far-Red Solar-Induced Chlorophyll Fluorescence Escape Probability in Discontinuous Forest Canopies. Remote Sensing, 2020, 12, 3962.	4.0	6
18	Performance of Solar-Induced Chlorophyll Fluorescence in Estimating Water-Use Efficiency in a Temperate Forest. Remote Sensing, 2018, 10, 796.	4.0	4

#	Article	IF	CITATIONS
19	Far-Red Chlorophyll Fluorescence Radiance Tracks Photosynthetic Carbon Assimilation Efficiency of Dark Reactions. Applied Sciences (Switzerland), 2021, 11, 10821.	2.5	4