Karl J Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6565649/publications.pdf

Version: 2024-02-01

KADI I KDAMED

#	Article	IF	CITATIONS
1	<i>Laccase 2</i> is the phenoloxidase gene required for beetle cuticle tanning. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11337-11342.	7.1	342
2	Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 2001, 57, 385-392.	1.9	193
3	Molecular and Functional Analyses of Amino Acid Decarboxylases Involved in Cuticle Tanning in Tribolium castaneum. Journal of Biological Chemistry, 2009, 284, 16584-16594.	3.4	181
4	Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2009, 39, 355-365.	2.7	145
5	Cuticle formation and pigmentation in beetles. Current Opinion in Insect Science, 2016, 17, 1-9.	4.4	125
6	Repeated Co-options of Exoskeleton Formation during Wing-to-Elytron Evolution in Beetles. Current Biology, 2009, 19, 2057-2065.	3.9	122
7	A chitin-like component in Aedes aegypti eggshells, eggs and ovaries. Insect Biochemistry and Molecular Biology, 2007, 37, 1249-1261.	2.7	94
8	Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochemistry and Molecular Biology, 2014, 49, 24-34.	2.7	82
9	Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2014, 53, 22-29.	2.7	76
10	Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2010, 40, 259-266.	2.7	72
11	Tribolium castaneum RR-1 Cuticular Protein TcCPR4 Is Required for Formation of Pore Canals in Rigid Cuticle. PLoS Genetics, 2015, 11, e1004963.	3.5	69
12	Cuticular protein with a low complexity sequence becomes cross-linked during insect cuticle sclerotization and is required for the adult molt. Scientific Reports, 2015, 5, 10484.	3.3	67
13	Catecholamines and β-alanine in the red flour beetle, Tribolium castaneum. Insect Biochemistry, 1984, 14, 293-298.	1.8	57
14	Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum. Developmental Biology, 2015, 399, 315-324.	2.0	53
15	A chitinase with two catalytic domains is required for organization of the cuticular extracellular matrix of a beetle. PLoS Genetics, 2018, 14, e1007307.	3.5	46
16	Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. Insect Biochemistry and Molecular Biology, 2020, 122, 103386.	2.7	46
17	Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2016, 79, 119-129.	2.7	39
18	Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor. Insect Biochemistry and Molecular Biology, 2020, 117, 103291.	2.7	37

Karl J Kramer

#	Article	IF	CITATIONS
19	Development and ultrastructure of the rigid dorsal and flexible ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2017, 91, 21-33.	2.7	36
20	Group I chitin deacetylases are essential for higher order organization of chitin fibers in beetle cuticle. Journal of Biological Chemistry, 2018, 293, 6985-6995.	3.4	34
21	Knickkopf and retroactive proteins are required for formation of laminar serosal procuticle during embryonic development of Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2015, 60, 1-6.	2.7	22
22	N-β-Alanyldopamine levels and synthesis in integument and other tissues of Manduca sexta (L.) during the larval-pupal transformation. Insect Biochemistry, 1989, 19, 169-175.	1.8	20
23	N-β-alanyldopamine and N-acetyldopamine occurrence and synthesis in the central nervous system of Manduca sexta (L.). Insect Biochemistry, 1990, 20, 605-610.	1.8	20
24	Functional Specialization Among Members Of Knickkopf Family Of Proteins In Insect Cuticle Organization. PLoS Genetics, 2014, 10, e1004537.	3.5	19
25	Mechanical properties of mineralized and sclerotized puparial cuticles of the fliesMusca autumnalis andM. domestica. The Journal of Experimental Zoology, 1987, 243, 201-210.	1.4	12
26	Yellow-y Functions in Egg Melanization and Chorion Morphology of the Asian Tiger Mosquito, Aedes albopictus. Frontiers in Cell and Developmental Biology, 2021, 9, 769788.	3.7	10
27	AA15 lytic polysaccharide monooxygenase is required for efficient chitinous cuticle turnover during insect molting. Communications Biology, 2022, 5, .	4.4	10
28	Catecholamines in the cuticles of four strains of the german cockroachBlattella germanica (L.) during sclerotization and melanization. Archives of Insect Biochemistry and Physiology, 1989, 12, 145-156.	1.5	9
29	Determination of L-Ascorbyl 6-Palmitate in Bread Using Reverse-Phase High-Performance Liquid Chromatography (HPLC) with Electrochemical (EC) Detection. Journal of Food Science, 1987, 52, 948-953.	3.1	8
30	A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum. Insect Biochemistry and Molecular Biology, 2014, 49, 43-48.	2.7	2
31	Chitin deacetylases are necessary for insect femur muscle attachment and mobility. Proceedings of the United States of America, 2022, 119, .	7.1	2
32	Cuticle tanning in Tribolium castaneum. Entomological Research, 2011, 41, 293-293.	1.1	1
33	Expression Profiles and Functional Analysis of Genes Encoding Chitin Deacetylases, Extracellular Matrix-Modifying Proteins in Tribolium castaneum. Entomological Research, 2011, 41, 294-294.	1.1	1
34	Why a Membrane-Anchored Chitinase (CHT7) in Tribolium?. Entomological Research, 2011, 41, 298-298.	1.1	1
35	Functional Analysis of Genes of Chitin Metabolism in Tribolium castaneum by RNA interference. Entomological Research, 2011, 41, 295-295.	1.1	0
36	RNAi-based functional analysis of yellow-e in Tribolium castaneum. Entomological Research, 2011, 41, 296-296.	1.1	0

#	Article	IF	CITATIONS
37	Two Major Structural Proteins Are Required for Rigid Adult Cuticle Formation in the Red Flour Beetle, Tribolium castaneum. Entomological Research, 2011, 41, 297-297.	1.1	Ο
38	Characterization of the Secondary Structure of CP30, a Highly Repetitive Ampholytic Protein in Beetle Elytral Cuticle. Macromolecular Symposia, 2015, 358, 212-216.	0.7	0