
Bo Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6565251/publications.pdf Version: 2024-02-01

Во 7ноц

#	Article	IF	CITATIONS
1	Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure–activity relationship. Food Chemistry, 2007, 104, 132-139.	4.2	161
2	Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radical Biology and Medicine, 2005, 38, 78-84.	1.3	157
3	A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition. Autophagy, 2016, 12, 1372-1389.	4.3	141
4	DNA damage induced by resveratrol and its synthetic analogues in the presence of Cu (II) ions: Mechanism and structure-activity relationship. Free Radical Biology and Medicine, 2006, 41, 1807-1816.	1.3	139
5	Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 70-77.	1.1	138
6	Radical-Scavenging Activity and Mechanism of Resveratrol-Oriented Analogues: Influence of the Solvent, Radical, and Substitution. Journal of Organic Chemistry, 2009, 74, 5025-5031.	1.7	128
7	Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radical Biology and Medicine, 2006, 40, 526-535.	1.3	118
8	Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure–activity relationship. Food and Chemical Toxicology, 2008, 46, 149-156.	1.8	115
9	Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie, 2008, 90, 1499-1505.	1.3	102
10	Antioxidative Effects of Flavonols and Their Glycosides against the Free-Radical-Induced Peroxidation of Linoleic Acid in Solution and in Micelles. Chemistry - A European Journal, 2005, 11, 680-691.	1.7	83
11	Development and mechanism investigation of a new piperlongumine derivative as a potent anti-inflammatory agent. Biochemical Pharmacology, 2015, 95, 156-169.	2.0	71
12	Insights into the importance for designing curcumin-inspired anticancer agents by a prooxidant strategy: The case of diarylpentanoids. Free Radical Biology and Medicine, 2015, 85, 127-137.	1.3	70
13	Cooperation of ESIPT and ICT Processes in the Designed 2-(2′-Hydroxyphenyl)benzothiazole Derivative: A Near-Infrared Two-Photon Fluorescent Probe with a Large Stokes Shift for the Detection of Cysteine and Its Application in Biological Environments. Analytical Chemistry, 2020, 92, 14236-14243.	3.2	68
14	Hydroxycinnamic Acids as DNA leaving Agents in the Presence of Cu ^{II} lons: Mechanism, Structure–Activity Relationship, and Biological Implications. Chemistry - A European Journal, 2009, 15, 12889-12899.	1.7	66
15	A Curcumin Derivative That Inhibits Vinyl Carbamate-Induced Lung Carcinogenesis <i>via</i> Activation of the Nrf2 Protective Response. Antioxidants and Redox Signaling, 2015, 23, 651-664.	2.5	65
16	Synthesis and biological evaluation of hydroxylated 3-phenylcoumarins as antioxidants and antiproliferative agents. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6420-6425.	1.0	64
17	Synergistic antioxidant effect of green tea polyphenols with α-tocopherol on free radical initiated peroxidation of linoleic acid in micelles. Perkin Transactions II RSC, 2000, , 785-791.	1.1	59
18	Structure–activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation. Bioorganic Chemistry, 2006, 34, 142-157.	2.0	56

Во Zнои

#	Article	IF	CITATIONS
19	Protective effects of curcumin and its analogues against free radical-induced oxidative haemolysis of human red blood cells. Food Chemistry, 2006, 98, 112-119.	4.2	54
20	Influence of Glucuronidation and Reduction Modifications of Resveratrol on its Biological Activities. ChemBioChem, 2013, 14, 1094-1104.	1.3	51
21	Designing piperlongumine-directed anticancer agents by an electrophilicity-based prooxidant strategy: A mechanistic investigation. Free Radical Biology and Medicine, 2016, 97, 109-123.	1.3	50
22	Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol. Free Radical Biology and Medicine, 2011, 50, 1447-1457.	1.3	47
23	Cu-Catalyzed Oxyalkynylation and Aminoalkynylation of Unactivated Alkenes: Synthesis of Alkynyl-Featured Isoxazolines and Cyclic Nitrones. Organic Letters, 2018, 20, 2960-2963.	2.4	47
24	A Mild and Efficient Iron atalyzed Synthesis of Alkenyl Halides <i>via</i> Direct Addition of Benzyl Halides to Arylalkynes. Advanced Synthesis and Catalysis, 2009, 351, 371-374.	2.1	43
25	Design, synthesis, and evaluation of curcumin derivatives as Nrf2 activators and cytoprotectors against oxidative death. European Journal of Medicinal Chemistry, 2017, 134, 72-85.	2.6	40
26	Hydroxychalcones as potent antioxidants: Structure–activity relationship analysis and mechanism considerations. Food Chemistry, 2011, 126, 241-248.	4.2	39
27	A multi-signal mitochondria-targetable fluorescent probe for simultaneously discriminating Cys/Hcy/H2S, GSH, and SO2 and visualizing the endogenous generation of SO2 in living cells. Sensors and Actuators B: Chemical, 2021, 330, 129343.	4.0	38
28	Hybridâ€Increased Radicalâ€Scavenging Activity of Resveratrol Derivatives by Incorporating a Chroman Moiety of Vitaminâ€E. Chemistry - A European Journal, 2010, 16, 12808-12813.	1.7	36
29	Cu-Catalyzed Aminoacyloxylation of Unactivated Alkenes of Unsaturated Hydrazones with Manifold Carboxylic Acids toward Ester-Functionalized Pyrazolines. Organic Letters, 2018, 20, 4183-4186.	2.4	36
30	Developing a styrylpyridinium-based fluorescent probe with excellent sensitivity for visualizing basal H2S levels in mitochondria. Sensors and Actuators B: Chemical, 2021, 327, 128937.	4.0	35
31	Inhibition of free radical induced oxidative hemolysis of red blood cells by green tea polyphenols. Science Bulletin, 2000, 45, 2052-2056.	1.7	34
32	Facile and Efficient Synthesis of Benzoxazoles and Benzimidazoles: The Application of Hantzsch Ester 1,4â€Đihydropyridines in Reductive Cyclization Reactions. European Journal of Organic Chemistry, 2010, 2010, 6627-6632.	1.2	34
33	Hexamethoxylated Monocarbonyl Analogues of Curcumin Cause G2/M Cell Cycle Arrest in NCI-H460 Cells via Michael Acceptor-Dependent Redox Intervention. Journal of Agricultural and Food Chemistry, 2015, 63, 7731-7742.	2.4	33
34	Designing an ESIPT-based fluorescent probe for imaging of hydrogen peroxide during the ferroptosis process. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119264.	2.0	33
35	Toward an understanding of the role of a catechol moiety in cancer chemoprevention: The case of copper- and <i>o</i> -quinone-dependent Nrf2 activation by a catechol-type resveratrol analog. Molecular Nutrition and Food Research, 2015, 59, 2395-2406.	1.5	30
36	Developing a julolidine-fluorescein-based hybrid as a highly sensitive fluorescent probe for sensing and bioimaging cysteine in living cells. Talanta, 2019, 197, 631-637.	2.9	30

Во Zнои

#	Article	IF	CITATIONS
37	A water-soluble, highly sensitive and ultrafast fluorescence probe for imaging of mitochondrial hypochlorous acid. Sensors and Actuators B: Chemical, 2021, 344, 130210.	4.0	30
38	Decarboxylative Borylation of <i>m</i> CPBA-Activated Aliphatic Acids. Organic Letters, 2020, 22, 234-238.	2.4	29
39	Bioantioxidants: From chemistry to biology. Pure and Applied Chemistry, 2005, 77, 1887-1903.	0.9	28
40	Hypohalous acid-mediated halogenation of resveratrol and its role in antioxidant and antimicrobial activities. Food Chemistry, 2012, 135, 1239-1244.	4.2	27
41	Structural basis, chemical driving forces and biological implications of flavones as Cu(II) ionophores. Free Radical Biology and Medicine, 2017, 108, 554-563.	1.3	27
42	Developing Push–Pull Hydroxylphenylpolyenylpyridinium Chromophores as Ratiometric Two-Photon Fluorescent Probes for Cellular and Intravital Imaging of Mitochondrial NQO1. Analytical Chemistry, 2021, 93, 2385-2393.	3.2	27
43	Designing salicylaldehyde isonicotinoyl hydrazones as Cu(II) ionophores with tunable chelation and release of copper for hitting redox Achilles heel of cancer cells. Free Radical Biology and Medicine, 2018, 129, 215-226.	1.3	25
44	Targeting redox vulnerability of cancer cells by prooxidative intervention of a glutathione-activated Cu(II) pro-ionophore: Hitting three birds with one stone. Free Radical Biology and Medicine, 2018, 124, 342-352.	1.3	25
45	A 1,8-naphthalimide-based turn-on fluorescent probe for imaging mitochondrial hydrogen peroxide in living cells. Free Radical Research, 2018, 52, 1288-1295.	1.5	23
46	Silver-Catalyzed Site-Selective Ring-Opening and C–C Bond Functionalization of Cyclic Amines: Access to Distal Aminoalkyl-Substituted Quinones. Organic Letters, 2019, 21, 4590-4594.	2.4	23
47	Influence of side chain structure changes on antioxidant potency of the [6]-gingerol related compounds. Food Chemistry, 2014, 165, 191-197.	4.2	22
48	Antioxidant activity of green tea polyphenols against lipid peroxidation initiated by lipid-soluble radicals in micelles. Perkin Transactions II RSC, 2001, , 1835-1839.	1.1	21
49	Antioxidative effects of curcumin and its analogues against the freeâ€radicalâ€induced peroxidation of linoleic acid in micelles. Phytotherapy Research, 2009, 23, 1220-1228.	2.8	21
50	Strictinin as an efficient antioxidant in lipid peroxidation. Chemistry and Physics of Lipids, 2004, 131, 15-25.	1.5	20
51	Reduction of N-(alkoxy(aryl)methyl)benzamide Compounds by a Hantzsch Ester 1,4-Dihydropyridine Using Pd/C as a Catalyst. Catalysis Letters, 2008, 126, 361-366.	1.4	20
52	ROS-driven and preferential killing of HepG2 over L-02 cells by a short-term cooperation of Cu(II) and a catechol-type resveratrol analog. Food Chemistry, 2018, 250, 213-220.	4.2	20
53	Rational design of an ESIPT-based fluorescent probe for selectively monitoring glutathione in live cells and zebrafish. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 238, 118429.	2.0	20
54	Extraordinary Radical Scavengers: 4â€Mercaptostilbenes. Chemistry - A European Journal, 2012, 18, 5898-5905.	1.7	19

Во Zнои

#	Article	IF	CITATIONS
55	A hydrogen peroxide-activated Cu(II) pro-ionophore strategy for modifying naphthazarin as a promising anticancer agent with high selectivity for generating ROS in HepG2 cells over in L02Âcells. Free Radical Biology and Medicine, 2020, 152, 597-608.	1.3	19
56	Developing piperlongumine-directed glutathione S-transferase inhibitors by an electrophilicity-based strategy. European Journal of Medicinal Chemistry, 2017, 126, 517-525.	2.6	18
57	Identification of Catechol-Type Diphenylbutadiene as a Tyrosinase-Activated Pro-oxidative Chemosensitizer against Melanoma A375 Cells via Glutathione <i>S</i> -Transferase Inhibition. Journal of Agricultural and Food Chemistry, 2019, 67, 9060-9069.	2.4	17
58	Ultrafast Detection of Sulfur Dioxide Derivatives by a Distinctive "Dual-Positive-Ion―Platform that Features a Doubly Activated but Irreversible Michael Addition Site. Journal of Agricultural and Food Chemistry, 2021, 69, 4903-4910.	2.4	16
59	Tailoring 3,3′â€Dihydroxyisorenieratene to Hydroxystilbene: Finding a Resveratrol Analogue with Increased Antiproliferation Activity and Cell Selectivity. Chemistry - A European Journal, 2014, 20, 8904-8908.	1.7	15
60	Keto-enol-based modification on piperlongumine to generate a potent Cu(II) ionophore that triggers redox imbalance and death of HepG2 cells. Free Radical Biology and Medicine, 2018, 120, 124-132.	1.3	15
61	Cu ^{II} Ions and the Stilbene–Chroman Hybrid with a Catechol Moiety Synergistically Induced DNA Damage, and Cell Cycle Arrest and Apoptosis of HepG2 Cells: An Interesting Acid/Baseâ€Promoted Prooxidant Reaction. Chemistry - A European Journal, 2012, 18, 11100-11106.	1.7	14
62	Developing glutathione-activated catechol-type diphenylpolyenes as small molecule-based and mitochondria-targeted prooxidative anticancer theranostic prodrugs. Free Radical Biology and Medicine, 2019, 134, 406-418.	1.3	14
63	Trans-4,4′-dihydroxystilbene ameliorates cigarette smoke-induced progression of chronic obstructive pulmonary disease via inhibiting oxidative stress and inflammatory response. Free Radical Biology and Medicine, 2020, 152, 525-539.	1.3	14
64	An effective strategy to develop active cinnamic acid-directed antioxidants based on elongating the conjugated chains. Food Chemistry, 2014, 158, 41-47.	4.2	13
65	Prooxidative inhibition against NF-κB-mediated inflammation by pharmacological vitamin C. Free Radical Biology and Medicine, 2022, 180, 85-94.	1.3	13
66	A coumarin-based fluorescent probe: Small but multi-signal. Sensors and Actuators B: Chemical, 2022, 368, 132169.	4.0	13
67	Monocarbonyl curcumin analog A2 potently inhibits angiogenesis by inducing ROS-dependent endothelial cell death. Acta Pharmacologica Sinica, 2019, 40, 1412-1423.	2.8	12
68	A dual-site and dual-turn-on fluorescence probe for imaging mitochondrial HClO and SO2. Dyes and Pigments, 2022, 197, 109928.	2.0	12
69	Inhibiting NF-κB-Mediated Inflammation by Catechol-Type Diphenylbutadiene <i>via</i> an Intracellular Copper- and Iron-Dependent Pro-Oxidative Role. Journal of Agricultural and Food Chemistry, 2020, 68, 10029-10035.	2.4	11
70	Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 613-624.	1.9	10
71	Fast Imaging of Mitochondrial Thioredoxin Reductase Using a Styrylpyridinium-Based Two-Photon Ratiometric Fluorescent Probe. Analytical Chemistry, 2022, 94, 4970-4978.	3.2	10
72	Oxidative coupling of cinnamic acid derivatives and their radical-scavenging activities. Science Bulletin, 2010, 55, 2885-2890.	1.7	9

Во Ζнои

#	Article	IF	CITATIONS
73	A Catecholâ€Type Resveratrol Analog Manifests Antiangiogenic Action by Constructing an Efficient Catalytic Redox Cycle with Intracellular Copper Ions and NQO1. Molecular Nutrition and Food Research, 2018, 62, e1700969.	1.5	9
74	Applying an Electrophilicity-Based Strategy to Develop a Novel Nrf2 Activator Inspired from Dietary [6]-Shogaol. Journal of Agricultural and Food Chemistry, 2018, 66, 7983-7994.	2.4	8
75	A promising redox cycle-based strategy for designing a catechol-type diphenylbutadiene as a potent prooxidative anti-melanoma agent. Free Radical Biology and Medicine, 2019, 130, 489-498.	1.3	8
76	Redox-Based Strategy for Selectively Inducing Energy Crisis Inside Cancer Cells: An Example of Modifying Dietary Curcumin to Target Mitochondria. Journal of Agricultural and Food Chemistry, 2022, 70, 2898-2910.	2.4	6
77	Identification of resveratrol derivative 3,3′,4,4′,5,5′-hexamethoxy- trans-stilbene as a novel pro-angiogenic small-molecule compound. European Journal of Pharmacology, 2016, 791, 185-194.	1.7	5
78	Designing dichlorobinaphthoquinone as a prooxidative anticancer agent based on hydrogen peroxide-responsive in situ production of hydroxyl radicals. European Journal of Medicinal Chemistry, 2018, 159, 317-323.	2.6	5
79	Developing dietary curcumin mono-carbonyl piperidinone analogs as Nrf2-dependent cytoprotectors against oxidative damage: Structure-activity relationship and mechanisms. Free Radical Biology and Medicine, 2022, 186, 66-75.	1.3	5
80	Michael acceptor-dependent pro-oxidative intervention against angiogenesis by [6]-dehydroshogaol, a pungent constituent of ginger. European Journal of Pharmacology, 2022, 925, 174990.	1.7	3