List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6565163/publications.pdf Version: 2024-02-01

ICHINAD K DIIDI

#	Article	IF	CITATIONS
1	SARS-CoV-2 detection with aptamer-functionalized gold nanoparticles. Talanta, 2022, 236, 122841.	5.5	48
2	Facile synthesis of a hierarchical multi-layered CNT-NiFe2O4@MnO2 composite with enhanced microwave absorbing performance. Applied Surface Science, 2022, 581, 152363.	6.1	23
3	Influence of conductive porous electrodes on the apparent electrode kinetics of fenitrothion. Journal of Electroanalytical Chemistry, 2022, 910, 116200.	3.8	4
4	Hybrid surrogate model for online temperature and pressure predictions in data centers. Future Generation Computer Systems, 2021, 114, 531-547.	7.5	24
5	A gray-box model for real-time transient temperature predictions in data centers. Applied Thermal Engineering, 2021, 185, 116319.	6.0	30
6	Multiwalled Carbon Nanotubes Coated with Nitrogen–Sulfur Co-Doped Activated Carbon for Detecting Fenitrothion. ACS Applied Nano Materials, 2021, 4, 4781-4789.	5.0	22
7	A learner's journey towards a chemical engineering degree. Canadian Journal of Chemical Engineering, 2021, 99, 2149-2162.	1.7	3
8	Energy and Exergy-Aware Workload Assignment for Air-Cooled Data Centers. , 2021, , .		0
9	Pseudocapacitive behavior of ferrimagnetic NiFe2O4-carbon nanotube electrodes prepared with a multifunctional dispersing agent. Open Ceramics, 2021, 6, 100127.	2.0	22
10	Energy, exergy and computing efficiency based data center workload and cooling management. Applied Energy, 2021, 299, 117050.	10.1	22
11	A data-driven approach to simultaneous fault detection and diagnosis in data centers. Applied Soft Computing Journal, 2021, 110, 107638.	7.2	16
12	Waste heat recovery in a data center with an adsorption chiller: Technical and economic analysis. Energy Conversion and Management, 2021, 245, 114576.	9.2	20
13	Performance of a rack mountable cooling unit in an IT server enclosure. Thermal Science and Engineering Progress, 2020, 17, 100395.	2.7	5
14	Photocatalytic activity of electrophoretically deposited TiO2 and ZnO nanoparticles on fog harvesting meshes. Ceramics International, 2020, 46, 3777-3785.	4.8	26
15	On using the anisotropy in the thermal resistance of solid–fluid interfaces to more effectively cool nano-electronics. Molecular Simulation, 2020, 46, 162-167.	2.0	1
16	Modeling temperature distribution and power consumption in IT server enclosures with row-based cooling architectures. Applied Energy, 2020, 261, 114355.	10.1	37
17	Workload management for air-cooled data centers: An energy and exergy based approach. Energy, 2020, 209, 118485.	8.8	19
18	Influence of metal mesh wettability on fog harvesting in industrial cooling towers. Applied Thermal Engineering, 2020, 181, 115963.	6.0	17

#	Article	IF	CITATIONS
19	Fe3O4 spinel-Mn3O4 spinel supercapacitor prepared using Celestine blue as a dispersant, capping agent and charge transfer mediator. Ceramics International, 2020, 46, 18851-18858.	4.8	29
20	Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction. Energy, 2020, 201, 117625.	8.8	27
21	Label-Free Magnetic-Field-Assisted Assembly of Layer-on-Layer Cellular Structures. ACS Biomaterials Science and Engineering, 2020, 6, 4294-4303.	5.2	9
22	Functionally Decorated Carbon Nanotube Networks for Energy Storage in Supercapacitors. Frontiers in Energy Research, 2020, 8, .	2.3	2
23	Three-dimensional printing of diamagnetic microparticles in paramagnetic and diamagnetic media. Physics of Fluids, 2020, 32, .	4.0	6
24	The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading. Advanced Energy Materials, 2020, 10, 1903848.	19.5	152
25	Fibroblasts Accelerate Formation and Improve Reproducibility of 3D Cellular Structures Printed with Magnetic Assistance. Research, 2020, 2020, 3970530.	5.7	5
26	High areal capacitance of Fe ₃ O ₄ â€decorated carbon nanotubes for supercapacitor electrodes. , 2019, 1, 124-133.		74
27	Influence of cooling architecture on data center power consumption. Energy, 2019, 183, 525-535.	8.8	42
28	MnFe2O4-coated carbon nanotubes with enhanced microwave absorption: Effect of CNT content and hydrothermal reaction time. Diamond and Related Materials, 2019, 96, 31-43.	3.9	54
29	Polypyrrole-Carbon Nanotube-FeOOH Composites for Negative Electrodes of Asymmetric Supercapacitors. Journal of the Electrochemical Society, 2019, 166, A935-A940.	2.9	18
30	Tailoring anisotropic thermal conductivity by varying filler particle organization in nickel-polydimethylsiloxane composites. Journal of Composite Materials, 2019, 53, 2569-2577.	2.4	0
31	Synthesis of CuO Nanocrystals Supported on Multiwall Carbon Nanotubes for Nanothermite Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1407-1416.	3.7	4
32	Nanothermite colloids: A new prospective for enhanced performance. Defence Technology, 2019, 15, 319-325.	4.2	18
33	Novel Superthermite Nanocomposite Hybrid Material Based on CuO Coated Carbon Nanofibers for Advanced Energetic Systems. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 851-858.	3.7	1
34	Tailoring the properties of a polymer nanocomposite with a magnetic field. Polymer Composites, 2019, 40, 779-788.	4.6	6
35	Rapid Magnetic 3D Printing of Cellular Structures with MCF-7 Cell Inks. Research, 2019, 2019, 9854593.	5.7	46
36	3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces. Biomaterials Science, 2018, 6, 683-694.	5.4	14

#	Article	IF	CITATIONS
37	Gadopentatic acid affects in vitro proliferation and doxorubicin response in human breast adenocarcinoma cells. BioMetals, 2018, 31, 605-616.	4.1	5
38	Synthesis, Characterization, and Applications of Carbon Nanotubes Functionalized with Magnetic Nanoparticles. , 2018, , 37-57.		5
39	Low-temperature synthesis of manganese oxide–carbon nanotube-enhanced microwave-absorbing nanocomposites. Journal of Materials Science, 2018, 53, 16288-16302.	3.7	32
40	Altering thermal transport by strained-layer epitaxy. Applied Physics Letters, 2018, 112, 194101.	3.3	4
41	Influence of molecular structure of extractor molecules on liquid-liquid extraction of oxide particles and properties of composites. Ceramics International, 2018, 44, 15714-15720.	4.8	6
42	High areal capacitance of FeOOH-carbon nanotube negative electrodes for asymmetric supercapacitors. Ceramics International, 2018, 44, 18007-18015.	4.8	25
43	Real-time temperature predictions in IT server enclosures. International Journal of Heat and Mass Transfer, 2018, 127, 890-900.	4.8	27
44	Influence of particle arrangement on the permittivity of an elastomeric composite. AIP Advances, 2017, 7, .	1.3	16
45	Recipe for optimizing a solid-state thermal rectifier. International Journal of Thermal Sciences, 2017, 117, 260-265.	4.9	11
46	MnO2-Carbon Nanotube Electrodes for Supercapacitors with High Active Mass Loadings. Journal of the Electrochemical Society, 2017, 164, A1673-A1678.	2.9	23
47	Liquid–liquid extraction of oxide particles and application in supercapacitors. Journal of Materials Research, 2017, 32, 3242-3250.	2.6	7
48	Strategies for liquid-liquid extraction of oxide particles for applications in supercapacitor electrodes and thin films. Journal of Colloid and Interface Science, 2017, 499, 1-8.	9.4	12
49	Magnetic Printing of a Biosensor: Inexpensive Rapid Sensing To Detect Picomolar Amounts of Antigen with Antibody-Functionalized Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 11790-11797.	8.0	13
50	Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application. Nanotechnology, 2017, 28, 075603.	2.6	27
51	Understanding the liquid–liquid (water–hexane) interface. Chemical Physics Letters, 2017, 685, 422-426.	2.6	3
52	A two-step model of TiO 2 nanoparticle toxicity in human liver tissue. Toxicology and Applied Pharmacology, 2017, 334, 47-54.	2.8	28
53	Magnetoresponsive conductive colloidal suspensions with magnetized carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2017, 421, 292-299.	2.3	10
54	High gradient magnetic field microstructures for magnetophoretic cell separation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1027, 194-199.	2.3	12

#	Article	IF	CITATIONS
55	Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties. Materials Research Express, 2016, 3, 125014.	1.6	14
56	Printing Three-Dimensional Heterogeneities in the Elastic Modulus of an Elastomeric Matrix. ACS Applied Materials & Interfaces, 2016, 8, 11018-11023.	8.0	9
57	Tailoring Material Stiffness by Filler Particle Organization. ACS Applied Materials & Interfaces, 2016, 8, 27449-27453.	8.0	11
58	In Situ 3D Label-Free Contactless Bioprinting of Cells through Diamagnetophoresis. ACS Biomaterials Science and Engineering, 2016, 2, 2133-2138.	5.2	29
59	Achieving thermal rectification in designed liquid-liquid systems. Applied Physics Letters, 2016, 108, 134101.	3.3	4
60	Decorating carbon nanotubes with co-precipitated magnetite nanocrystals. Diamond and Related Materials, 2016, 66, 90-97.	3.9	16
61	Magnetic assembly of 3D cell clusters: visualizing the formation of an engineered tissue. Cell Proliferation, 2016, 49, 134-144.	5.3	29
62	Nickel Nanoparticles Entangled in Carbon Nanotubes: Novel Ink for Nanotube Printing. ACS Applied Materials & Interfaces, 2016, 8, 1589-1593.	8.0	27
63	Printing microstructures in a polymer matrix using a ferrofluid droplet. Journal of Magnetism and Magnetic Materials, 2016, 401, 1054-1059.	2.3	17
64	Microfluidic Particle Counting Sensors. , 2016, , 429-446.		0
65	Thermal AND Gate Using a Monolayer Graphene Nanoribbon. Small, 2015, 11, 2910-2917.	10.0	24
66	Patterning the Stiffness of Elastomeric Nanocomposites by Magnetophoretic Control of Cross-linking Impeder Distribution. Materials, 2015, 8, 474-485.	2.9	14
67	Changing the magnetic properties of microstructure by directing the self-assembly of superparamagnetic nanoparticles. Faraday Discussions, 2015, 181, 423-435.	3.2	15
68	Understanding unusual thermal transport behavior in soft materials under mechanical strain – A molecular dynamics study. Chemical Physics Letters, 2015, 626, 102-105.	2.6	5
69	Synthesis of Superhydrophobic Carbon Surface during Combustion Propane. Eurasian Chemico-Technological Journal, 2015, 14, 19.	0.6	13
70	Role of wing morphing in thrust generation. Theoretical and Applied Mechanics Letters, 2014, 4, 032003.	2.8	8
71	Particle Transport in Therapeutic Magnetic Fields. Annual Review of Fluid Mechanics, 2014, 46, 407-440.	25.0	44
72	Thermal energy storage in porous materials with adsorption and desorption of moisture. International Journal of Heat and Mass Transfer, 2014, 69, 285-292.	4.8	27

#	Article	IF	CITATIONS
73	Dynamic rectification in a thermal diode based on fluid-solid interfaces: Contrasting behavior of soft materials and fluids. Applied Physics Letters, 2014, 104, 211601.	3.3	12
74	Thermal rectification in a polymer-functionalized single-wall carbon nanotube. Nanotechnology, 2014, 25, 345401.	2.6	23
75	Comparison of Engagement with Ethics Between an Engineering and a Business Program. Science and Engineering Ethics, 2013, 19, 585-597.	2.9	18
76	Soft polymer magnetic nanocomposites: microstructure patterning by magnetophoretic transport and self-assembly. Soft Matter, 2013, 9, 2024-2029.	2.7	39
77	Reducing thermal transport in electrically conducting polymers: Effects of ordered mixing of polymer chains. Applied Physics Letters, 2013, 102, 023109.	3.3	13
78	Phonon transport in an initially twisted polyvinyl acetate nanofiber. Applied Physics Letters, 2013, 102,	3.3	7
79	A thermal logic device based on fluid-solid interfaces. Applied Physics Letters, 2013, 102, .	3.3	25
80	Communication: A tractable design for a thermal transistor. Journal of Chemical Physics, 2013, 139, 151102.	3.0	9
81	The Mechanism of the Initiation and Progression of Glioma. Journal of Applied Mechanics, Transactions ASME, 2013, 80, .	2.2	0
82	Collaborative Dual-Degree Programs and Value Added for Students. Journal of Studies in International Education, 2012, 16, 40-61.	3.2	30
83	Communication: Thermal rectification in liquids by manipulating the solid-liquid interface. Journal of Chemical Physics, 2012, 137, 081101.	3.0	22
84	Thermal rectification in a fluid reservoir. Applied Physics Letters, 2012, 100, .	3.3	16
85	Molecular simulations of thermal transport across interfaces: solid–vapour and solid–solid. Molecular Simulation, 2012, 38, 642-652.	2.0	5
86	Influence of Temperature-Dependent Thomson Coefficient on Thermal Transport in a Low-Dimensional Nanostructure. Nanoscale and Microscale Thermophysical Engineering, 2012, 16, 260-273.	2.6	1
87	Modifying thermal transport in electrically conducting polymers: Effects of stretching and combining polymer chains. Journal of Chemical Physics, 2012, 136, 044901.	3.0	38
88	Influence of natural and anthropogenic carbon dioxide sequestration on global warming. Ecological Modelling, 2012, 235-236, 1-7.	2.5	48
89	Shear viscosity enhancement in water–nanoparticle suspensions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 860-863.	2.1	14
90	Elastomechanical properties of resilin. Soft Matter, 2011, 7, 11006.	2.7	14

#	Article	IF	CITATIONS
91	Evaluation of engineering double-degree programs in Sweden: results of the Lund Focus Groups. European Journal of Higher Education, 2011, 1, 220-232.	2.7	8
92	Thermal conductivity reduction through isotope substitution in nanomaterials: predictions from an analytical classical model and nonequilibrium molecular dynamics simulations. Nanoscale, 2011, 3, 3714.	5.6	54
93	Heat conduction across a solid-solid interface: Understanding nanoscale interfacial effects on thermal resistance. Applied Physics Letters, 2011, 99, .	3.3	75
94	Mathematical model of the role of intercellular signalling in intercellular cooperation during tumorigenesis. Cell Proliferation, 2011, 44, 192-203.	5.3	10
95	Release of stored thermochemical energy from dehydrated salts. International Journal of Heat and Mass Transfer, 2011, 54, 4856-4863.	4.8	23
96	Structure of aqueous MgSO4 solution: Dilute to concentrated. Chemical Physics Letters, 2011, 508, 38-42.	2.6	20
97	Parametric investigation of heating due to magnetic fluid hyperthermia in a tumor with blood perfusion. Journal of Magnetism and Magnetic Materials, 2011, 323, 708-716.	2.3	62
98	Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells. Journal of Power Sources, 2011, 196, 5829-5834.	7.8	50
99	Non-premixed flame synthesis of hydrophobic carbon nanostructured surfaces. Proceedings of the Combustion Institute, 2011, 33, 3351-3357.	3.9	8
100	Lattice thermal conductivity of a silicon nanowire under surface stress. Journal of Applied Physics, 2011, 109, .	2.5	21
101	Multiscale Thermal Transport Across Solid-Solid Interfaces. , 2010, , .		0
102	Dynamics of impinging nanoscale jets. Chemical Physics Letters, 2010, 491, 177-182.	2.6	7
103	Anomalous flow behavior in closed and open thin walled nanochannels. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4242-4246.	2.1	4
104	Modeling of thermochemical energy storage by salt hydrates. International Journal of Heat and Mass Transfer, 2010, 53, 5700-5706.	4.8	81
105	Microfluidic transport in magnetic MEMS and bioMEMS. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 382-399.	6.1	53
106	Coupled mathematical model of tumorigenesis and angiogenesis in vascular tumours. Cell Proliferation, 2010, 43, 542-552.	5.3	5
107	Numerical investigation of flow-through immunoassay in a microchannel. Journal of Applied Physics, 2010, 107, 034907.	2.5	7
			_

108 Thermochemical Energy Storage Using Salt Hydrates. , 2010, , .

#	Article	IF	CITATIONS
109	A Heterogeneous Multiscale Model for Interfacial Thermal Transport. , 2010, , .		Ο
110	The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia. Journal of Applied Physics, 2010, 108, .	2.5	82
111	A Reduced-Order Model for Unsteady Flow over Circular Cylinder. , 2010, , .		3
112	Role of hydrophobicity in bacterial adherence to carbon nanostructures and biofilm formation. Biofouling, 2010, 26, 333-339.	2.2	58
113	Mathematical Modeling for the Pathogenesis of Alzheimer's Disease. PLoS ONE, 2010, 5, e15176.	2.5	54
114	A Multiscale Methodology to Approach Nanoscale Thermal Transport. Challenges and Advances in Computational Chemistry and Physics, 2010, , 135-150.	0.6	1
115	Factors Affecting the Assembly of Carbon Nanostructures With Cells and Enzymes. , 2010, , .		0
116	Thermal transport through superlattice solid-solid interfaces. Applied Physics Letters, 2009, 95, .	3.3	17
117	Magnetic microsphere-based mixers for microdroplets. Physics of Fluids, 2009, 21, .	4.0	76
118	A deterministic representation of cascade spreading in complex networks. Europhysics Letters, 2009, 87, 48004.	2.0	15
119	Effect of fuel type on the extinction of fuel and air stream diluted partially premixed flames. Proceedings of the Combustion Institute, 2009, 32, 2583-2590.	3.9	11
120	Hybrid mathematical model of glioma progression. Cell Proliferation, 2009, 42, 637-646.	5.3	48
121	Magnetic separation from superparamagnetic particle suspensions. Journal of Magnetism and Magnetic Materials, 2009, 321, 2251-2256.	2.3	52
122	Thermal transport through a fluid–solid interface. Chemical Physics Letters, 2009, 476, 267-270.	2.6	32
123	Simulating the Effects of Angiogenesis on Tumorigenesis Through Computational Modeling. , 2009, , .		0
124	Suppression of fuel and air stream diluted methane–air partially premixed flames in normal and microgravity. Fire Safety Journal, 2008, 43, 24-35.	3.1	7
125	Lattice Boltzmann method simulation of electroosmotic stirring in a microscale cavity. Microfluidics and Nanofluidics, 2008, 4, 463-470.	2.2	9
126	Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. Journal of Magnetism and Magnetic Materials, 2008, 320, 1398-1405.	2.3	86

#	Article	IF	CITATIONS
127	Molecular simulation of thermal transport across hydrophilic interfaces. Chemical Physics Letters, 2008, 467, 110-113.	2.6	56
128	A model for catalytic growth of carbon nanotubes. Journal Physics D: Applied Physics, 2008, 41, 065304.	2.8	85
129	Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Applied Physics Letters, 2008, 92, 233121.	3.3	59
130	Enhancement in hydrogen storage in carbon nanotubes under modified conditions. Nanotechnology, 2008, 19, 155702.	2.6	14
131	Experimental and Numerical Investigation of n-Heptane/Air Counterflow Nonpremixed Flame Structure. Journal of Propulsion and Power, 2008, 24, 797-804.	2.2	10
132	Unsteady nanoscale thermal transport across a solid-fluid interface. Journal of Applied Physics, 2008, 104, .	2.5	36
133	Thermal transport across nanoscale solid-fluid interfaces. Applied Physics Letters, 2008, 92, .	3.3	79
134	Interfacial Thermal Resistance in Nanoscale Heat Transfer. , 2008, , .		0
135	Thermal radiation modeling in flames and fires. WIT Transactions on State-of-the-art in Science and Engineering, 2008, , 301-325.	0.0	3
136	Dynamics of nanoscale jet formation and impingement on flat surfaces. Physics of Fluids, 2007, 19, .	4.0	19
137	A Review of Flame Extinction Phenomena from the Perspective of Fire Suppression. , 2007, , .		0
138	Partially-Premixed Flames: Applications and Issues. , 2007, , .		0
139	Field-Assisted Self-Assembly of Superparamagnetic Nanoparticles for Biomedical, MEMS and BioMEMS Applications. Advances in Applied Mechanics, 2007, 41, 293-335.	2.3	42
140	Nanoscale Jet Collision and Mixing Dynamics. Nano Letters, 2007, 7, 707-712.	9.1	20
141	THE INFLUENCE OF REAL-GAS THERMODYNAMICS ON SIMULATIONS OF FREELY PROPAGATING FLAMES IN METHANE/OXYGEN/INERT MIXTURES. Combustion Science and Technology, 2007, 179, 1777-1795.	2.3	12
142	Preferential ion and water intake using charged carbon nanotubes. Chemical Physics Letters, 2007, 434, 292-296.	2.6	40
143	Flame synthesis of superhydrophobic amorphous carbon surfaces. Carbon, 2007, 45, 1702-1706.	10.3	48
144	A detailed model for the flame synthesis of carbon nanotubes and nanofibers. Proceedings of the Combustion Institute, 2007, 31, 1821-1829.	3.9	33

#	Article	IF	CITATIONS
145	Mathematical model for chemotherapeutic drug efficacy in arresting tumour growth based on the cancer stem cell hypothesis. Cell Proliferation, 2007, 40, 338-354.	5.3	37
146	Single magnetic particle dynamics in a microchannel. Physics of Fluids, 2007, 19, .	4.0	63
147	Liftoff and extinction characteristics of fuel- and air-stream-diluted methane–air flames. Combustion and Flame, 2007, 149, 340-352.	5.2	37
148	Extinguishment of Partially Premixed Flames in Normal- and Microgravity with Applications to Fire Safety. , 2006, , .		0
149	Hydrogen Storage in Carbon Nanostructures: Possibilities and Challenges for Fundamental Molecular Simulations. Proceedings of the IEEE, 2006, 94, 1806-1814.	21.3	38
150	Mathematical model for the cancer stem cell hypothesis. Cell Proliferation, 2006, 39, 3-14.	5.3	100
151	An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species. Combustion and Flame, 2006, 145, 740-764.	5.2	84
152	Magnetic Targeting of Particle Transport Under Pulsatile Flow. , 2006, , 605.		0
153	Modeling of Structure and Growth Rate of Carbon Nanotubes in Flame Synthesis. , 2006, , .		0
154	Carbon Nanotubes as Nano-Pumps: A Molecular Dynamics Investigation. , 2006, , .		0
155	Dilution and Suppression of Partially Premixed Flames in Normal and Microgravity for Different Fuels. , 2006, , .		0
156	Magnetic Micromanipulation of a Single Magnetic Microsphere in a Microchannel. , 2006, , .		0
157	Catalyst influence on the flame synthesis of aligned carbon nanotubes and nanofibers. Proceedings of the Combustion Institute, 2005, 30, 2553-2560.	3.9	23
158	Structure of partially premixed n-heptane–air counterflow flames. Proceedings of the Combustion Institute, 2005, 30, 447-453.	3.9	26
159	Gravity effects on partially premixed flames: an experimental-numerical investigation. Proceedings of the Combustion Institute, 2005, 30, 511-518.	3.9	9
160	Analyzing ferrofluid transport for magnetic drug targeting. Journal of Magnetism and Magnetic Materials, 2005, 289, 331-334.	2.3	111
161	Control of confined nonpremixed flames using a microjet. International Journal of Heat and Fluid Flow, 2005, 26, 431-439.	2.4	19
162	Liftoff characteristics of partially premixed flames under normal and microgravity conditions. Combustion and Flame, 2005, 143, 159-173.	5.2	52

#	Article	IF	CITATIONS
163	Effect of pressure on counterflow H2–air partially premixed flames. Combustion and Flame, 2005, 140, 46-59.	5.2	18
164	A scaling analysis to characterize thermomagnetic convection. International Journal of Heat and Mass Transfer, 2005, 48, 3485-3492.	4.8	66
165	Immunomagnetic Separation in Microchannels: From MEMS to BioNEMS. , 2005, , 27.		1
166	Field-induced self-assembled ferrofluid aggregation in pulsatile flow. Physics of Fluids, 2005, 17, 097104.	4.0	30
167	A strategy for the assembly of three-dimensional mesoscopic structures using a ferrofluid. Physics of Fluids, 2005, 17, 057103.	4.0	21
168	Partially Premixed Flames and Fire Safety in Space: A Review. , 2005, , .		0
169	Effect of Pressure on Counterflow H2-Air Partially Premixed Flames. , 2005, , .		0
170	Lifted Dilute Partially Premixed Flames in Microgravity with Applications to Fire Safety. , 2005, , .		0
171	Gravity, radiation, and coflow effects on partially premixed flames. Physics of Fluids, 2004, 16, 2963-2974.	4.0	31
172	Numerical simulation of early stages of oxide formation in molten aluminium–magnesium alloys in a reverberatory furnace. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 389-405.	2.0	21
173	Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles. Nanotechnology, 2004, 15, 264-268.	2.6	31
174	Field measurements of soot volume fractions in laminar partially premixed coflow ethylene/air flames. Combustion and Flame, 2004, 138, 362-372.	5.2	75
175	Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. Journal of Magnetism and Magnetic Materials, 2004, 271, 63-73.	2.3	184
176	Nonpremixed flame control with microjets. Experiments in Fluids, 2004, 36, 635-641.	2.4	11
177	A methodology to control direct-fired furnaces. International Journal of Heat and Mass Transfer, 2004, 47, 5247-5256.	4.8	16
178	Triple flame propagation and stabilization in a laminar axisymmetric jet. Combustion Theory and Modelling, 2004, 8, 293-314.	1.9	38
179	Investigation of n-Heptane/Air Partially Premixed Flames Using Detailed Reaction Mechanisms. , 2004, , .		0

180 Lifted Partially Premixed Flames in Microgravity. , 2004, , .

#	Article	IF	CITATIONS
181	Thermomagnetic convection in a square enclosure using a line dipole. Physics of Fluids, 2004, 16, 2228-2236.	4.0	73
182	How Do the Local Conditions Influence the Flame Synthesis of Carbon Nanostructures?. , 2004, , 485.		0
183	Ferrofluid Transport Analysis for Micro- and Mesoscale Applications. , 2004, , 65.		2
184	Magnetically Assembled 3-D Mesoscopic Patterns Using Suspension of Superparamagnetic Nanoparticles. , 2004, , .		4
185	An assessment of stretch effects on a flame tip using the thin flame and thick flame formulations. Combustion and Flame, 2003, 133, 499-502.	5.2	9
186	Effect of Gravity on Burner-Stabilized and Lifted Partially Premixed Flames. , 2003, , .		1
187	Gravity Effects on Partially Premixed Flames. , 2003, , .		1
188	VISUALIZATION OF SCALAR TRANSPORT IN NONREACTING AND REACTING JETS THROUGH A UNIFIED "HEATLINE" AND "MASSLINE" FORMULATION. Numerical Heat Transfer; Part A: Applications, 2003, 44, 683-704.	2.1	18
189	Enhancement of Heat Transfer in Miniaturized Channels Using Ferrohydrodynamic Convection. , 2003, , 501.		1
190	Response of flame speed to positively and negatively curved premixed flames. Combustion Theory and Modelling, 2003, 7, 205-220.	1.9	1
191	A Numerical Simulation of Oxide Formation During the Melting of Aluminum in Aluminum Furnace. , 2003, , .		0
192	Numerical Modeling of the Oxidation of Aluminum Alloy. , 2003, , .		0
193	On Extension of "Heatline―and "Massline―Concepts to Reacting Flows Through Use of Conserved Scalars. Journal of Heat Transfer, 2002, 124, 791-799.	2.1	33
194	Control of Nonpremixed Flames Using Microjets. , 2002, , 23.		0
195	Flame propagation in premixed laminar coannular jets. , 2002, , .		Ο
196	A Numerical Investigation of Turbulent Non-Premixed Nozzle-Mixed Industrial Burner. , 2002, , 659.		0
197	Temperature measurements in steady axisymmetric partially premixed flames by use of rainbow schlieren deflectometry. Applied Optics, 2002, 41, 1922.	2.1	25
198	Digital recording and numerical reconstruction of holograms: an optical diagnostic for combustion. Applied Optics, 2002, 41, 3890.	2.1	22

#	Article	IF	CITATIONS
199	Transition of Propagating Triple Flames to Burner Attached Flames in an Axisymmetric Jet. , 2002, , .		1
200	Characteristics of lifted triple flames stabilized in the near field of a partially premixed axisymmetric jet. Proceedings of the Combustion Institute, 2002, 29, 1565-1572.	3.9	52
201	Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames. Combustion and Flame, 2002, 128, 121-132.	5.2	58
202	Digital Recording and Numerical Reconstruction of Holograms: A New Optical Diagnostic for Combustion. , 2002, , .		0
203	A numerical and experimental investigation of "inverse―triple flames. Physics of Fluids, 2001, 13, 265-275.	4.0	26
204	Systematic approach based on holographic interferometry measurements to characterize the flame structure of partially premixed flames. Applied Optics, 2001, 40, 731.	2.1	17
205	On the similitude between lifted and burner-stabilized triple flames: a numerical and experimental investigation. Combustion and Flame, 2001, 124, 311-325.	5.2	34
206	Contribution of curvature to flame-stretch effects on premixed flames. Combustion and Flame, 2001, 126, 1640-1654.	5.2	37
207	Radiation and NO Pathways in Nonpremixed Turbulent Flames. Journal of Propulsion and Power, 2001, 17, 222-224.	2.2	2
208	Temperature measurements in steady axisymmetric partially premixed flames using rainbow Schlieren deflectometry. , 2001, 4448, 370.		1
209	Flame stretch effects on partially premixed flames. Combustion and Flame, 2000, 123, 119-139.	5.2	22
210	Temperature measurements in steady two-dimensional partially premixed flames using laser interferometric holography. Combustion and Flame, 2000, 120, 318-332.	5.2	73
211	Effects of C2-Chernistry on the Structure of Partially Premixed Methane-Air Flames. Combustion Science and Technology, 2000, 157, 185-211.	2.3	12
212	A numerical investigation of radiative effects in near-extinction microgravity methane-air nonpremixed flames. , 2000, , .		1
213	Flame structure approach applied to holographic interferometry measurements in partially premixed flames. , 2000, , .		0
214	Gravity effects on steady two-dimensional partially premixed methane–air flames. Combustion and Flame, 1999, 118, 91-107.	5.2	45
215	The structure of triple flames stabilized on a slot burner. Combustion and Flame, 1999, 119, 23-40.	5.2	87
216	Gravity effects on triple flames: Flame structure and flow instability. Physics of Fluids, 1999, 11, 3449-3464.	4.0	58

#	Article	IF	CITATIONS
217	Application of Flamelet Profiles to Flame Structure in Practical Burners. Journal of Energy Resources Technology, Transactions of the ASME, 1999, 121, 66-72.	2.3	7
218	NO2 chemiluminescent emission from flames influenced by acoustic noise. Journal of Mechanical Science and Technology, 1998, 12, 728-733.	0.4	0
219	An experimental and numerical investigation of the structure of steady two-dimensional partially premixed methane-air flames. Proceedings of the Combustion Institute, 1998, 27, 625-632.	0.3	44
220	Flame Structure Interactions and State Relationships in an Unsteady Partially Premixed Flame. AIAA Journal, 1998, 36, 1190-1199.	2.6	26
221	Flame structure interactions and state relationships in an unsteady partially premixed flame. AIAA Journal, 1998, 36, 1190-1199.	2.6	7
222	Oxidation of CH3CHO by O3and H2O2Mixtures in Supercritical CO2in a Perfectly Stirred Reactor. Industrial & Engineering Chemistry Research, 1997, 36, 3446-3452.	3.7	7
223	A numerical investigation of the flame structure of an unsteady inverse partially premixed flame. Combustion and Flame, 1997, 111, 296-311.	5.2	29
224	Flame-vortex dynamics in an inverse partially premixed combustor: The Froude number effects. Combustion and Flame, 1997, 111, 276-295.	5.2	87
225	Heat release mechanisms in inhibited laminar counterflow flames. Combustion and Flame, 1996, 104, 27-40.	5.2	15
226	Structures of multiple combustion waves formed under filtration of lean hydrogen-air mixtures in a packed bed. Proceedings of the Combustion Institute, 1996, 26, 3369-3375.	0.3	25
227	Acetylene and ethylene mole fractions in methane/air partially premixed flames. Proceedings of the Combustion Institute, 1996, 26, 993-999.	0.3	9
228	The removal of NO by low-temperature O3 oxidation. Combustion and Flame, 1995, 102, 512-518.	5.2	15
229	Stretched laminar flamelet modeling of turbulent chloromethane-air nonpremixed jet flames. Combustion and Flame, 1995, 103, 328-338.	5.2	9
230	Soot distribution in turbulent nonpremixed chloromethane — Air flames. Experimental Thermal and Fluid Science, 1995, 11, 395-413.	2.7	0
231	The structure of nonpremixed methyl chloride and methyl chloride/methane air flames near extinction. Combustion and Flame, 1994, 96, 381-392.	5.2	8
232	The structure of inhibited counterflowing nonpremixed flames. Combustion and Flame, 1994, 98, 107-122.	5.2	10
233	Experimental investigation of stretched premixed flames burning mixtures of methane and methyl chloride in air and comparison with numerical simulations. Combustion and Flame, 1993, 94, 25-34.	5.2	12
234	A reduced kinetic mechanism for premixed CH3Cl/CH4/air flames. Combustion and Flame, 1993, 94, 191-204.	5.2	19

#	Article	IF	CITATIONS
235	Numerical simulation of stoichiometric premixed flames burning CH3Cl / CH4 / air mixtures at atmospheric pressure with a full and short reaction mechanism and comparison of the flame speeds with experimental results. Combustion and Flame, 1993, 92, 419-439.	5.2	31
236	A reduced kinetic mechanism for premixed CH3Cl/air flames. Combustion and Flame, 1993, 92, 440-455.	5.2	16
237	Prediction of the pulsation frequency of flames formed over a semi-infinite horizontal surface. International Journal of Heat and Mass Transfer, 1993, 36, 2657-2663.	4.8	6
238	NOx formation in stretched premixed flames established far from extinction. Fuel, 1993, 72, 489-495.	6.4	2
239	The Extinction of Methane/Methyl Chloride Nonpremixed Flames. Hazardous Waste and Hazardous Materials, 1993, 10, 71-79.	0.4	2
240	Extinction Criteria for Buoyant Nonpremixed Flames. Combustion Science and Technology, 1992, 84, 305-321.	2.3	6
241	Dioxin formation in stretched flames. Chemosphere, 1992, 24, 1785-1798.	8.2	1
242	Second law analysis of convective droplet burning. International Journal of Heat and Mass Transfer, 1992, 35, 2571-2578.	4.8	33
243	The Influence of Transport Properties on Droplet Burning. Combustion Science and Technology, 1991, 76, 67-80.	2.3	20
244	On the forces of droplets in Poiseuille flow. Physics of Fluids A, Fluid Dynamics, 1990, 2, 1281-1284.	1.6	4
245	Droplet Behavior in Counterflowing Streams. Combustion Science and Technology, 1989, 66, 267-292.	2.3	23
246	The structure and extinction of partially premixed flames burning methane in air. Proceedings of the Combustion Institute, 1989, 22, 1555-1563.	0.3	23
247	A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air. Proceedings of the Combustion Institute, 1988, 21, 1783-1792.	0.3	165
248	A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Methane-Air Diffusion Flame. Combustion Science and Technology, 1987, 56, 1-22.	2.3	102
249	The Extinction of Counterflow Premixed Flames Burning Diluted Methane-Air, and Diluted Propane-Air Mixtures. Combustion Science and Technology, 1987, 53, 55-65.	2.3	14
250	Extinction of diffusion flames burning diluted methane and diluted propane in diluted air. Combustion and Flame, 1986, 65, 137-150.	5.2	188
251	Experimental and theoretical investigation of partially premixed diffusion flames at extinction. Combustion and Flame, 1985, 61, 237-249.	5.2	72
252	Harmonic Analysis of a Triductor — Part 1. International Journal of Electrical Engineering and Education, 1975, 12, 129-134.	0.8	0

#	Article	IF	CITATIONS
253	Thermal Imaging of All Furnace Internal Surfaces for Monitoring and Control. Ceramic Engineering and Science Proceedings, 0, , 219-230.	0.1	0
254	Labelâ€Free Cell Migration Assay Using Magnetic Exclusion. Advanced Materials Technologies, 0, , 2101033.	5.8	2