Moacir Wajner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/656502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural History, Outcome, and Treatment Efficacy in Children and Adults with Glutaryl-CoA Dehydrogenase Deficiency. Pediatric Research, 2006, 59, 840-847.	1.1	224
2	l-carnitine supplementation as a potential antioxidant therapy for inherited neurometabolic disorders. Gene, 2014, 533, 469-476.	1.0	180
3	Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies. Bioscience Reports, 2016, 36, e00281.	1.1	138
4	Methylmalonate administration decreases Na+,K+-ATPase activity in cerebral cortex of rats. NeuroReport, 2000, 11, 2331-2334.	0.6	119
5	Resveratrol Protects C6 Astrocyte Cell Line against Hydrogen Peroxide-Induced Oxidative Stress through Heme Oxygenase 1. PLoS ONE, 2013, 8, e64372.	1.1	114
6	Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cellular and Molecular Neurobiology, 2002, 22, 353-363.	1.7	109
7	An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study. Human Mutation, 2010, 31, 380-390.	1.1	108
8	Inhibition of Na(+),K(+)-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochemical Research, 2002, 27, 1685-1689.	1.6	96
9	D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. European Journal of Neuroscience, 2003, 17, 2017-2022.	1.2	95
10	Distribution of xanthine dehydrogenase and oxidase activities in human and rabbit tissues. Biochimica Et Biophysica Acta - General Subjects, 1989, 991, 79-84.	1.1	93
11	<scp>l</scp> -2-Hydroxyglutaric Aciduria: Pattern of MR Imaging Abnormalities in 56 Patients. Radiology, 2009, 251, 856-865.	3.6	90
12	Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. NeuroReport, 2000, 11, 249-254.	0.6	86
13	In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metabolic Brain Disease, 2003, 18, 147-154.	1.4	84
14	Mitochondrial energy metabolism is markedly impaired by d-2-hydroxyglutaric acid in rat tissues. Molecular Genetics and Metabolism, 2005, 86, 188-199.	0.5	84
15	Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. NeuroReport, 2000, 11, 541-544.	0.6	82
16	Reduction of Na(+),K(+)-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochemical Research, 2002, 27, 1593-1598.	1.6	82
17	Glutaric acid induces oxidative stress in brain of young rats. Brain Research, 2003, 964, 153-158.	1.1	79
18	Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1639, 232-238.	1.8	79

#	Article	IF	CITATIONS
19	Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. Journal of Neurochemistry, 2004, 90, 1025-1035.	2.1	79
20	Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by d-2-hydroxyglutaric acid in vitro. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 81-91.	1.8	77
21	In vitro evidence for an antioxidant role of 3-hydroxykynurenine and 3-hydroxyanthranilic acid in the brain. Neurochemistry International, 2007, 50, 83-94.	1.9	77
22	Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metabolic Brain Disease, 2006, 21, 279-286.	1.4	75
23	α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Research, 2010, 1324, 75-84.	1.1	75
24	Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. International Journal of Developmental Neuroscience, 2003, 21, 327-332.	0.7	73
25	Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. Journal of Bioenergetics and Biomembranes, 2011, 43, 31-38.	1.0	71
26	Intrastriatal methylmalonic acid administration induces rotational behavior and convulsions through glutamatergic mechanisms. Brain Research, 1996, 721, 120-125.	1.1	69
27	α-Keto Acids Accumulating in Maple Syrup Urine Disease Stimulate Lipid Peroxidation and Reduce Antioxidant Defences in Cerebral Cortex From Young Rats. Metabolic Brain Disease, 2005, 20, 155-167.	1.4	69
28	Oxidative Stress in Phenylketonuria: What is the Evidence?. Cellular and Molecular Neurobiology, 2011, 31, 653-662.	1.7	67
29	3-hydroxyglutaric acid induces oxidative stress and decreases the antioxidant defenses in cerebral cortex of young rats. Brain Research, 2002, 956, 367-373.	1.1	63
30	Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Metabolic Brain Disease, 2002, 17, 47-54.	1.4	63
31	Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. Journal of Bioenergetics and Biomembranes, 2011, 43, 39-46.	1.0	62
32	Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson´s disease. Metabolic Brain Disease, 2009, 24, 257-269.	1.4	61
33	Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. Journal of the Neurological Sciences, 2000, 181, 44-49.	0.3	60
34	Ascorbic acid prevents cognitive deficits caused by chronic administration of propionic acid to rats in the water maze. Pharmacology Biochemistry and Behavior, 2002, 73, 623-629.	1.3	60
35	Acute intrastriatal administration of quinolinic acid provokes hyperphosphorylation of cytoskeletal intermediate filament proteins in astrocytes and neurons of rats. Experimental Neurology, 2010, 224, 188-196.	2.0	60
36	Ascorbic acid and α-tocopherol attenuate methylmalonic acid-induced convulsions. NeuroReport, 1999, 10, 2039-2043.	0.6	59

#	Article	IF	CITATIONS
37	l-Carnitine Blood Levels and Oxidative Stress in Treated Phenylketonuric Patients. Cellular and Molecular Neurobiology, 2009, 29, 211-218.	1.7	59
38	Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 344-352.	1.8	58
39	Experimental Evidence that Phenylalanine Provokes Oxidative Stress in Hippocampus and Cerebral Cortex of Developing Rats. Cellular and Molecular Neurobiology, 2010, 30, 317-326.	1.7	58
40	Effect of Chemically Induced Propionic Acidemia on Neurobehavioral Development of Rats. Pharmacology Biochemistry and Behavior, 1999, 64, 529-534.	1.3	56
41	Inhibition of Brain Energy Metabolism by the Branched-chain Amino Acids Accumulating in Maple Syrup Urine Disease. Neurochemical Research, 2008, 33, 114-124.	1.6	56
42	Induction of oxidative stress by L-2-hydroxyglutaric acid in rat brain. Journal of Neuroscience Research, 2003, 74, 103-110.	1.3	55
43	Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats. Journal of Neurochemistry, 2006, 99, 1531-1542.	2.1	55
44	Chronic treatment with glutaric acid induces partial tolerance to excitotoxicity in neuronal cultures from chick embryo telencephalons. Journal of Neuroscience Research, 2002, 68, 424-431.	1.3	53
45	Proline induces oxidative stress in cerebral cortex of rats. International Journal of Developmental Neuroscience, 2003, 21, 105-110.	0.7	53
46	Inhibition of Na+,K+-ATPase from rat brain cortex by propionic acid. NeuroReport, 1998, 9, 1719-1721.	0.6	52
47	Inhibition of synaptosomal [3H]glutamate uptake and [3H]glutamate binding to plasma membranes from brain of young rats by glutaric acid in vitro. Journal of the Neurological Sciences, 2000, 173, 93-96.	0.3	52
48	Evaluation of the mechanisms involved in leucine-induced oxidative damage in cerebral cortex of young rats. Free Radical Research, 2005, 39, 71-79.	1.5	52
49	Effect of short―and longâ€ŧerm exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. International Journal of Developmental Neuroscience, 2009, 27, 243-247.	0.7	52
50	Induction of Oxidative Stress by Chronic and Acute Glutaric Acid Administration to Rats. Cellular and Molecular Neurobiology, 2007, 27, 423-438.	1.7	51
51	Inhibition of Na+, K+-ATPase activity by the metabolites accumulating in homocystinuria. Metabolic Brain Disease, 2002, 17, 83-91.	1.4	49
52	Prevention by l-carnitine of DNA damage induced by propionic and l-methylmalonic acids in human peripheral leukocytes in vitro. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2010, 702, 123-128.	0.9	49
53	Experimental Evidence that Methylmalonic Acid Provokes Oxidative Damage and Compromises Antioxidant Defenses in Nerve Terminal and Striatum of Young Rats. Cellular and Molecular Neurobiology, 2011, 31, 775-785.	1.7	49
54	Neurological Damage in MSUD: The Role of Oxidative Stress. Cellular and Molecular Neurobiology, 2014, 34, 157-165.	1.7	49

#	Article	IF	CITATIONS
55	Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain α-keto acids accumulating in maple syrup urine disease. Neurochemistry International, 2006, 49, 640-650.	1.9	48
56	Guanidinoacetate Decreases Antioxidant Defenses and Total Protein Sulfhydryl Content in Striatum of Rats. Neurochemical Research, 2008, 33, 1804-1810.	1.6	48
57	Cannabinoid receptor agonists reduce the short-term mitochondrial dysfunction and oxidative stress linked to excitotoxicity in the rat brain. Neuroscience, 2015, 285, 97-106.	1.1	48
58	Pharmacological evidence for GABAergic and glutamatergic involvement in the convulsant and behavioral effects of glutaric acid. Brain Research, 1998, 802, 55-60.	1.1	47
59	Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. International Journal of Developmental Neuroscience, 2006, 24, 45-52.	0.7	47
60	Selective screening for organic acidemias by urine organic acid GC–MS analysis in Brazil: Fifteen-year experience. Clinica Chimica Acta, 2009, 400, 77-81.	0.5	47
61	Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochemical Research, 2001, 26, 1195-1200.	1.6	46
62	Brain energy metabolism is compromised by the metabolites accumulating in homocystinuria. Neurochemistry International, 2003, 43, 597-602.	1.9	45
63	Quinolinic acid reduces the antioxidant defenses in cerebral cortex of young rats. International Journal of Developmental Neuroscience, 2005, 23, 695-701.	0.7	45
64	Astrocytic proliferation and mitochondrial dysfunction induced by accumulated glutaric acidemia I (GAI) metabolites: Possible implications for GAI pathogenesis. Neurobiology of Disease, 2008, 32, 528-534.	2.1	45
65	Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of l â€carnitine supplementation. International Journal of Developmental Neuroscience, 2010, 28, 127-132.	0.7	45
66	Methionine alters Na + ,K + â€ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. International Journal of Developmental Neuroscience, 2005, 23, 651-656.	0.7	44
67	In vitro phosphorylation of cytoskeletal proteins from cerebral cortex of rats. Brain Research Protocols, 2003, 11, 111-118.	1.7	43
68	Neurological manifestations of organic acidurias. Nature Reviews Neurology, 2019, 15, 253-271.	4.9	43
69	Effect of proline administration on rat behavior in aversive and nonaversive tasks. Pharmacology Biochemistry and Behavior, 1989, 32, 885-890.	1.3	42
70	Arginine Administration Decreases Cerebral Cortex Acetylcholinesterase and Serum Butyrylcholinesterase Probably by Oxidative Stress Induction. Neurochemical Research, 2004, 29, 385-389.	1.6	42
71	Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats. Neurochemistry International, 2004, 45, 1087-1094.	1.9	42
72	Inhibition of creatine kinase activity from rat cerebral cortex by -2-hydroxyglutaric acid in vitro. Neurochemistry International, 2004, 44, 45-52.	1.9	42

#	Article	IF	CITATIONS
73	γ-Hydroxybutyric acid induces oxidative stress in cerebral cortex of young rats. Neurochemistry International, 2007, 50, 564-570.	1.9	42
74	Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. Journal of the Neurological Sciences, 2010, 292, 89-95.	0.3	42
75	Urinary biomarkers of oxidative stress and plasmatic inflammatory profile in phenylketonuric treated patients. International Journal of Developmental Neuroscience, 2015, 47, 259-265.	0.7	42
76	Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: Implications for a possible therapeutic strategy for sulfite oxidase deficiency. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2135-2148.	1.8	42
77	Nitric oxide synthase inhibition by L-NAME prevents the decrease of Na+,K+-ATPase activity in midbrain of rats subjected to arginine administration. Neurochemical Research, 2001, 26, 515-520.	1.6	41
78	Intrastriatal administration of 3-hydroxyglutaric acid induces convulsions and striatal lesions in rats. Brain Research, 2001, 916, 70-75.	1.1	41
79	Antioxidant Effect of Cysteamine in Brain Cortex of Young Rats. Neurochemical Research, 2008, 33, 737-744.	1.6	41
80	Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 679, 13-16.	0.9	41
81	Inhibition of creatine kinase activity in vitro by ethylmalonic acid in cerebral cortex of young rats. Neurochemical Research, 2002, 27, 1633-1639.	1.6	40
82	Protein and lipid damage in maple syrup urine disease patients: <scp>l</scp> arnitine effect. International Journal of Developmental Neuroscience, 2013, 31, 21-24.	0.7	40
83	In vitro inhibition of Na+,K+-ATPase activity from rat cerebral cortex by guanidino compounds accumulating in hyperargininemia. Brain Research, 1999, 838, 78-84.	1.1	39
84	Isovaleric Acid Reduces Na+, K+-ATPase Activity in Synaptic Membranes from Cerebral Cortex of Young Rats. Cellular and Molecular Neurobiology, 2007, 27, 529-540.	1.7	39
85	Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metabolic Brain Disease, 2008, 23, 71-80.	1.4	39
86	Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria. Journal of Bioenergetics and Biomembranes, 2013, 45, 47-57.	1.0	39
87	Impairment of energy metabolism in hippocampus of rats subjected to chemically-induced hyperhomocysteinemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1637, 187-192.	1.8	38
88	Experimental evidence of oxidative stress in plasma of homocystinuric patients: A possible role for homocysteine. Molecular Genetics and Metabolism, 2011, 104, 112-117.	0.5	38
89	Oxidative stress in Niemannâ€Pick type C patients: a protective role of Nâ€butylâ€deoxynojirimycin therapy. International Journal of Developmental Neuroscience, 2012, 30, 439-444.	0.7	38
90	Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochemical Research, 2002, 27, 353-357.	1.6	37

#	Article	IF	CITATIONS
91	Intrastriatal Administration of Guanidinoacetate Inhibits Na+, K+-ATPase and Creatine Kinase Activities in Rat Striatum. Metabolic Brain Disease, 2006, 21, 39-48.	1.4	37
92	Proline reduces acetylcholinesterase activity in cerebral cortex of rats. Metabolic Brain Disease, 2003, 18, 79-86.	1.4	36
93	Evidence for a synergistic action of glutaric and 3â€hydroxyglutaric acids disturbing rat brain energy metabolism. International Journal of Developmental Neuroscience, 2007, 25, 391-398.	0.7	36
94	Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochemical Research, 2003, 28, 675-679.	1.6	35
95	Inhibition of energy metabolism in cerebral cortex of young rats by the medium-chain fatty acids accumulating in MCAD deficiency. Brain Research, 2004, 1030, 141-151.	1.1	35
96	Induction of lipid peroxidation and decrease of antioxidant defenses in symptomatic and asymptomatic patients with Xâ€linked adrenoleukodystrophy. International Journal of Developmental Neuroscience, 2007, 25, 441-444.	0.7	35
97	Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats. Life Sciences, 2008, 82, 652-662.	2.0	35
98	Disturbance of brain energy and redox homeostasis provoked by sulfite and thiosulfate: Potential pathomechanisms involved in the neuropathology of sulfite oxidase deficiency. Gene, 2013, 531, 191-198.	1.0	35
99	Oxidative Stress, Disrupted Energy Metabolism, and Altered Signaling Pathways in Glutaryl-CoA Dehydrogenase Knockout Mice: Potential Implications of Quinolinic Acid Toxicity in the Neuropathology of Glutaric Acidemia Type I. Molecular Neurobiology, 2016, 53, 6459-6475.	1.9	35
100	Characterization of the inhibition of pyruvate kinase caused by phenylalanine and phenylpyruvate in rat brain cortex. Brain Research, 2003, 968, 199-205.	1.1	34
101	5-Oxoproline Reduces Non-Enzymatic Antioxidant Defenses in vitro in Rat Brain. Metabolic Brain Disease, 2007, 22, 51-65.	1.4	34
102	Signaling mechanisms downstream of quinolinic acid targeting the cytoskeleton of rat striatal neurons and astrocytes. Experimental Neurology, 2012, 233, 391-399.	2.0	34
103	Signaling mechanisms underlying the glioprotective effects of resveratrol against mitochondrial dysfunction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1827-1838.	1.8	34
104	In vivo and in vitro effects of proline on some parameters of oxidative stress in rat brain. Brain Research, 2003, 991, 180-186.	1.1	33
105	Glutaric acid stimulates glutamate binding and astrocytic uptake and inhibits vesicular glutamate uptake in forebrain from young rats. Neurochemistry International, 2004, 45, 1075-1086.	1.9	33
106	Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain. Brain Research, 2009, 1296, 117-126.	1.1	33
107	Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats. Life Sciences, 2010, 87, 275-280.	2.0	33
108	Chemically induced model of hypermethioninemia in rats. Journal of Neuroscience Methods, 2007, 160, 1-4.	1.3	32

#	Article	IF	CITATIONS
109	Tyrosine promotes oxidative stress in cerebral cortex of young rats. International Journal of Developmental Neuroscience, 2008, 26, 551-559.	0.7	32
110	Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain. Neurochemistry International, 2009, 54, 519-525.	1.9	32
111	Lower in vivo brain extracellular GABA concentration in diabetic rats during forced swimming. Brain Research, 2003, 968, 281-284.	1.1	31
112	Glutaric Acid Administration Impairs Energy Metabolism in Midbrain and Skeletal Muscle of Young Rats. Neurochemical Research, 2005, 30, 1123-1131.	1.6	31
113	Evidence that glutaric acid reduces glutamate uptake by cerebral cortex of infant rats. Life Sciences, 2007, 81, 1668-1676.	2.0	31
114	Acute administration of 5-oxoproline induces oxidative damage to lipids and proteins and impairs antioxidant defenses in cerebral cortex and cerebellum of young rats. Metabolic Brain Disease, 2010, 25, 145-154.	1.4	31
115	Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1413-1422.	1.8	31
116	Promotion of oxidative stress by l-tryptophan in cerebral cortex of rats. Neurochemistry International, 2006, 49, 87-93.	1.9	30
117	Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metabolic Brain Disease, 2009, 24, 415-425.	1.4	30
118	Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain. Neurochemistry International, 2010, 56, 930-936.	1.9	30
119	Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain. Life Sciences, 2010, 86, 825-831.	2.0	30
120	Oxidative Stress Parameters in Urine from Patients with Disorders of Propionate Metabolism: a Beneficial Effect of l-Carnitine Supplementation. Cellular and Molecular Neurobiology, 2012, 32, 77-82.	1.7	30
121	Oxidative damage in glutaric aciduria type I patients and the protective effects of l arnitine treatment. Journal of Cellular Biochemistry, 2018, 119, 10021-10032.	1.2	30
122	l â€2â€Hydroxyglutaric acid inhibits mitochondrial creatine kinase activity from cerebellum of developing rats. International Journal of Developmental Neuroscience, 2003, 21, 217-224.	0.7	29
123	A chemically-induced acute model of maple syrup urine disease in rats for neurochemical studies. Journal of Neuroscience Methods, 2006, 155, 224-230.	1.3	29
124	Kynurenines Impair Energy Metabolism in Rat Cerebral Cortex. Cellular and Molecular Neurobiology, 2007, 27, 147-160.	1.7	29
125	Evidence that 3â€hydroxyâ€3â€methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex. Journal of Neuroscience Research, 2008, 86, 683-693.	1.3	29
126	Effects of 1,4-butanediol administration on oxidative stress in rat brain: Study of the neurotoxicity of γ-hydroxybutyric acid in vivo. Metabolic Brain Disease, 2009, 24, 271-282.	1.4	29

#	Article	IF	CITATIONS
127	Simvastatin treatment prevents oxidative damage to DNA in whole blood leukocytes of dyslipidemic type 2 diabetic patients. Cell Biochemistry and Function, 2010, 28, 360-366.	1.4	29
128	Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration. Molecular Genetics and Metabolism, 2012, 106, 31-38.	0.5	29
129	Toxicity of octanoate and decanoate in rat peripheral tissues: evidence of bioenergetic dysfunction and oxidative damage induction in liver and skeletal muscle. Molecular and Cellular Biochemistry, 2012, 361, 329-335.	1.4	29
130	Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation. Molecular Genetics and Metabolism, 2013, 108, 30-39.	0.5	29
131	Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metabolic Brain Disease, 2015, 30, 1167-1174.	1.4	29
132	l-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 775, 43-47.	0.4	29
133	Inhibition of Na+,K+-ATPase activity from rat hippocampus by proline. Neurochemical Research, 2001, 26, 1321-1326.	1.6	28
134	In vitro stimulation of oxidative stress in cerebral cortex of rats by the guanidino compounds accumulating in hyperargininemia. Brain Research, 2001, 923, 50-57.	1.1	28
135	α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Developmental Brain Research, 2002, 139, 267-276.	2.1	28
136	Ethylmalonic acid inhibits mitochondrial creatine kinase activity from cerebral cortex of young rats in vitro. Neurochemical Research, 2003, 28, 771-777.	1.6	28
137	Ascorbic acid prevents water maze behavioral deficits caused by early postnatal methylmalonic acid administration in the rat. Brain Research, 2003, 976, 234-242.	1.1	28
138	Evidence that oxidative stress is involved in the inhibitory effect of proline on Na + ,K + â€ATPase activity in synaptic plasma membrane of rat hippocampus. International Journal of Developmental Neuroscience, 2003, 21, 303-307.	0.7	28
139	Oxidative Stress in Homocystinuria Due to Cystathionine ß-Synthase Deficiency: Findings in Patients and in Animal Models. Cellular and Molecular Neurobiology, 2017, 37, 1477-1485.	1.7	28
140	Neurochemical evidence that 3â€methylglutaric acid inhibits synaptic Na ⁺ ,K ⁺ â€ATPase activity probably through oxidative damage in brain cortex of young rats. International Journal of Developmental Neuroscience, 2011, 29, 1-7.	0.7	27
141	Urinary biomarkers of oxidative damage in Maple syrup urine disease: The <scp>l</scp> â€carnitine role. International Journal of Developmental Neuroscience, 2015, 42, 10-14.	0.7	27
142	2â€Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria. Journal of Neurochemistry, 2016, 137, 62-75.	2.1	27
143	Methylmalonic and propionic acids increase the in vitro incorporation of into cytoskeletal proteins from cerebral cortex of young rats through NMDA glutamate receptors. Brain Research, 2000, 856, 111-118.	1.1	26
144	Reduction of energy metabolism in rat hippocampus by arginine administration. Brain Research, 2003, 983, 58-63.	1.1	26

#	Article	IF	CITATIONS
145	Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. International Journal of Developmental Neuroscience, 2003, 21, 111-116.	0.7	26
146	Evidence that the branched-chain ?-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia, 2004, 48, 230-240.	2.5	26
147	Reduction of Butyrylcholinesterase Activity in Rat Serum Subjected to Hyperhomocysteinemia. Metabolic Brain Disease, 2005, 20, 97-103.	1.4	26
148	Amino acids levels and lipid peroxidation in maple syrup urine disease patients. Clinical Biochemistry, 2009, 42, 462-466.	0.8	26
149	Experimental evidence of oxidative stress in patients with I-2-hydroxyglutaric aciduria and that I-carnitine attenuates in vitro DNA damage caused by d-2-hydroxyglutaric and I-2-hydroxyglutaric acids. Toxicology in Vitro, 2017, 42, 47-53.	1.1	26
150	Glutaric acid moderately compromises energy metabolism in rat brain. International Journal of Developmental Neuroscience, 2005, 23, 687-693.	0.7	25
151	Propionic Acid Induces Cytoskeletal Alterations in Cultured Astrocytes From Rat Cerebral Cortex. Metabolic Brain Disease, 2006, 21, 49-60.	1.4	25
152	Striatal neuronal death mediated by astrocytes from the Gcdhâ^'/â^' mouse model of glutaric acidemia type I. Human Molecular Genetics, 2015, 24, 4504-4515.	1.4	25
153	Increased oxidative stress in patients with 3-hydroxy-3-methylglutaric aciduria. Molecular and Cellular Biochemistry, 2015, 402, 149-155.	1.4	25
154	Alanine prevents the decrease of Na+,K+-ATPase activity in experimental phenylketonuria. Metabolic Brain Disease, 1999, 14, 95-101.	1.4	24
155	Pharmacological evidence that α-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Research, 2001, 894, 68-73.	1.1	24
156	Brain Na+,K(+)-ATPase inhibition induced by arginine administration is prevented by vitamins E and C. Neurochemical Research, 2003, 28, 825-829.	1.6	24
157	In vitro effect of quinolinic acid on energy metabolism in brain of young rats. Neuroscience Research, 2007, 57, 277-288.	1.0	24
158	Glycine Provokes Lipid Oxidative Damage and Reduces the Antioxidant Defenses in Brain Cortex of Young Rats. Cellular and Molecular Neurobiology, 2009, 29, 253-261.	1.7	24
159	In vitro evidence that phytanic acid compromises Na+,K+-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats. Brain Research, 2010, 1352, 231-238.	1.1	24
160	Marked reduction of Na+, K+-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice. Molecular Genetics and Metabolism, 2012, 107, 81-86.	0.5	24
161	Reduction of Na+, K+-ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: A possible mechanism for brain injury in glutaric aciduria type I. Molecular Genetics and Metabolism, 2012, 107, 375-382.	0.5	24
162	In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats. Free Radical Biology and Medicine, 2015, 83, 201-213.	1.3	24

#	Article	IF	CITATIONS
163	Effect of phenylalanine and its metabolites on ATP diphosphohydrolase activity in synaptosomes from rat cerebral cortex. Neurochemical Research, 1994, 19, 1175-1180.	1.6	23
164	Effects of methylmalonic and propionic acids on glutamate uptake by synaptosomes and synaptic vesicles and on glutamate release by synaptosomes from cerebral cortex of rats. Brain Research, 2001, 920, 194-201.	1.1	23
165	Alanine prevents the inhibition of pyruvate kinase activity caused by tryptophan in cerebral cortex of rats. Metabolic Brain Disease, 2003, 18, 129-137.	1.4	23
166	Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metabolic Brain Disease, 2003, 18, 207-219.	1.4	23
167	Inhibition of Na + , K + â€ATPase activity in rat striatum by the metabolites accumulated in Lesch–Nyhan disease. International Journal of Developmental Neuroscience, 2004, 22, 11-17.	0.7	23
168	Inhibition of the Electron Transport Chain and Creatine Kinase Activity by Ethylmalonic Acid in Human Skeletal Muscle. Metabolic Brain Disease, 2006, 21, 11-19.	1.4	23
169	Maple syrup urine disease in treated patients: Biochemical and oxidative stress profiles. Clinical Biochemistry, 2008, 41, 317-324.	0.8	23
170	In vivo experimental evidence that the major metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency induce oxidative stress in striatum of developing rats: A potential pathophysiological mechanism of striatal damage in this disorder. Molecular Genetics and Metabolism. 2013. 109. 144-153.	0.5	23
171	Toxic synergism between quinolinic acid and organic acids accumulating in glutaric acidemia type I and in disorders of propionate metabolism in rat brain synaptosomes: Relevance for metabolic acidemias. Neuroscience, 2015, 308, 64-74.	1.1	23
172	Effect of leucine administration on creatine kinase activity in rat brain. Metabolic Brain Disease, 2003, 18, 17-25.	1.4	22
173	The effect of Lorenzo's oil on oxidative stress in X-linked adrenoleukodystrophy. Journal of the Neurological Sciences, 2006, 247, 157-164.	0.3	22
174	N â€Acetylaspartic acid promotes oxidative stress in cerebral cortex of rats. International Journal of Developmental Neuroscience, 2007, 25, 317-324.	0.7	22
175	Erythrocyte glutathione peroxidase activity and plasma selenium concentration are reduced in maple syrup urine disease patients during treatment. International Journal of Developmental Neuroscience, 2007, 25, 335-338.	0.7	22
176	Hexacosanoic and docosanoic acids plasma levels in patients with cerebral childhood and asymptomatic X-linked adrenoleukodystrophy: Lorenzo's oil effect. Metabolic Brain Disease, 2008, 23, 43-49.	1.4	22
177	Oxidative stress is induced in female carriers of X-linked adrenoleukodystrophy. Journal of the Neurological Sciences, 2008, 266, 79-83.	0.3	22
178	Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radical Research, 2008, 42, 707-715.	1.5	22
179	Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3â€hydroxyâ€3â€methylglutaryl oA lyase deficiency as compared to liver. International Journal of Developmental Neuroscience, 2009, 27, 351-356.	0.7	22
180	Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS Journal, 2014, 281, 2061-2073.	2.2	22

#	Article	IF	CITATIONS
181	Mitochondrial bioenergetics deregulation caused by long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies in rat brain: A possible role of mPTP opening as a pathomechanism in these disorders?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1658-1667.	1.8	22
182	Reactive nitrogen species mediate oxidative stress and astrogliosis provoked by in vivo administration of phytanic acid in cerebellum of adolescent rats: A potential contributing pathomechanism of cerebellar injury in peroxisomal disorders. Neuroscience, 2015, 304, 122-132.	1.1	22
183	Oxidative Stress in Patients with X-Linked Adrenoleukodystrophy. Cellular and Molecular Neurobiology, 2016, 36, 497-512.	1.7	22
184	The Role of Oxidative Stress and Bioenergetic Dysfunction in Sulfite Oxidase Deficiency: Insights from Animal Models. Neurotoxicity Research, 2019, 35, 484-494.	1.3	22
185	Increased Glutamate Receptor and Transporter Expression in the Cerebral Cortex and Striatum of Gcdh-/- Mice: Possible Implications for the Neuropathology of Glutaric Acidemia Type I. PLoS ONE, 2014, 9, e90477.	1.1	22
186	Inhibition of Na + , K + â€ATPase activity in rat striatum by guanidinoacetate. International Journal of Developmental Neuroscience, 2003, 21, 183-189.	0.7	21
187	Evaluation of the mechanism underlying the inhibitory effect of guanidinoacetate on brain Na + , K + â€ATPase activity. International Journal of Developmental Neuroscience, 2004, 22, 191-196.	0.7	21
188	Age and Brain Structural Related Effects of Glutaric and 3-Hydroxyglutaric Acids on Glutamate Binding to Plasma Membranes During Rat Brain Development. Cellular and Molecular Neurobiology, 2007, 27, 805-818.	1.7	21
189	Tryptophan administration induces oxidative stress in brain cortex of rats. Metabolic Brain Disease, 2008, 23, 221-233.	1.4	21
190	Neurochemical evidence that glycine induces bioenergetical dysfunction. Neurochemistry International, 2010, 56, 948-954.	1.9	21
191	Pyruvate Kinase Activity and δ-Aminolevulinic Acid Dehydratase Activity as Biomarkers of Toxicity in Workers Exposed to Lead. Archives of Environmental Contamination and Toxicology, 2012, 63, 453-460.	2.1	21
192	Oxidative damage in mitochondrial fatty acids oxidation disorders patients and the in vitro effect of l-carnitine on DNA damage induced by the accumulated metabolites. Archives of Biochemistry and Biophysics, 2020, 679, 108206.	1.4	21
193	Inhibition of Glutamate Uptake into Synaptic Vesicles from Rat Brain by 3-Nitropropionic Acid in Vitro. Experimental Neurology, 2001, 172, 250-254.	2.0	20
194	Proline reduces creatine kinase activity in the brain cortex of rats. Neurochemical Research, 2003, 28, 1175-1180.	1.6	20
195	Oxidative stress induction by <i>cis</i> -4-decenoic acid: Relevance for MCAD deficiency. Free Radical Research, 2007, 41, 1261-1272.	1.5	20
196	Disturbance of mitochondrial functions provoked by the major long-chain 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies in skeletal muscle. Toxicology in Vitro, 2016, 36, 1-9.	1.1	20
197	On the mechanism of the inhibition of Na + , K + â€ATPase activity caused by homocysteine. International Journal of Developmental Neuroscience, 2002, 20, 77-81.	0.7	19
198	In vitro effects of d-2-hydroxyglutaric acid on glutamate binding, uptake and release in cerebral cortex of rats. Journal of the Neurological Sciences, 2004, 217, 189-194.	0.3	19

#	Article	IF	CITATIONS
199	Branched-Chain α-Keto Acids Accumulating in Maple Syrup Urine Disease Induce Reorganization of Phosphorylated GFAP in C6-Glioma Cells. Metabolic Brain Disease, 2005, 20, 205-217.	1.4	19
200	Folic acid pretreatment prevents the reduction of Na + ,K + â€ATPase and butyrylcholinesterase activities in rats subjected to acute hyperhomocysteinemia. International Journal of Developmental Neuroscience, 2006, 24, 3-8.	0.7	19
201	Evidence that the inhibitory effects of guanidinoacetate on the activities of the respiratory chain, Na+,K+-ATPase and creatine kinase can be differentially prevented by taurine and vitamins E and C administration in rat striatum in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 563-569.	1.8	19
202	Effect of the branched-chain α-keto acids accumulating in maple syrup urine disease on S100B release from glial cells. Journal of the Neurological Sciences, 2007, 260, 87-94.	0.3	19
203	Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Research, 2009, 1291, 102-112.	1.1	19
204	Intracerebroventricular administration of N-acetylaspartic acid impairs antioxidant defenses and promotes protein oxidation in cerebral cortex of rats. Metabolic Brain Disease, 2009, 24, 283-298.	1.4	19
205	Proline impairs energy metabolism in cerebral cortex of young rats. Metabolic Brain Disease, 2010, 25, 161-168.	1.4	19
206	Uncoupling, metabolic inhibition and induction of mitochondrial permeability transition in rat liver mitochondria caused by the major long-chain hydroxyl monocarboxylic fatty acids accumulating in LCHAD deficiency. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 620-628.	0.5	19
207	3-Hydroxy-3-methylglutaric and 3-methylglutaric acids impair redox status and energy production and transfer in rat heart: relevance for the pathophysiology of cardiac dysfunction in 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. Free Radical Research, 2016, 50, 997-1010.	1.5	19
208	Metabolite accumulation in <scp>VLCAD</scp> deficiency markedly disrupts mitochondrial bioenergetics and Ca ²⁺ homeostasis in the heart. FEBS Journal, 2018, 285, 1437-1455.	2.2	19
209	Chronic Exposure to β-Alanine Generates Oxidative Stress and Alters Energy Metabolism in Cerebral Cortex and Cerebellum of Wistar Rats. Molecular Neurobiology, 2018, 55, 5101-5110.	1.9	19
210	Diminished concentrations of ganglioside N-acetylneuraminic acid (G-NeuAc) in cerebellum of young rats receiving chronic administration of methylmalonic acid. Journal of the Neurological Sciences, 1988, 85, 233-238.	0.3	18
211	Alanine reverses the inhibitory effect of phenylalanine and its metabolites on Na+,K+-ATPase in synaptic plasma membranes from cerebral cortex of rats. Biochemical Society Transactions, 1995, 23, 227S-227S.	1.6	18
212	Proline administration decreases Na+,K+-ATPase activity in the synaptic plasma membrane from cerebral cortex of rats. Metabolic Brain Disease, 1999, 14, 265-272.	1.4	18
213	Inhibition of pyruvate kinase activity by cystine in brain cortex of rats. Brain Research, 2004, 1012, 93-100.	1.1	18
214	Reduction of Glutamate Uptake into Cerebral Cortex of Developing Rats by the Branched-Chain Alpha-Keto Acids Accumulating in Maple Syrup Urine Disease. Neurochemical Research, 2004, 29, 747-753.	1.6	18
215	Lysine induces lipid and protein damage and decreases reduced glutathione concentrations in brain of young rats. International Journal of Developmental Neuroscience, 2008, 26, 693-698.	0.7	18
216	Experimental evidence for protein oxidative damage and altered antioxidant defense in patients with mediumâ€chain acylâ€CoA dehydrogenase deficiency. Journal of Inherited Metabolic Disease, 2014, 37, 783-789.	1.7	18

#	Article	IF	CITATIONS
217	Disturbance of redox homeostasis as a contributing underlying pathomechanism of brain and liver alterations in 3â€hydroxyâ€3â€methylglutarylâ€CoA lyase deficiency. Journal of Inherited Metabolic Disease, 2015, 38, 1021-1028.	1.7	18
218	Lipid, Oxidative and Inflammatory Profile and Alterations in the Enzymes Paraoxonase and Butyrylcholinesterase in Plasma of Patients with Homocystinuria Due CBS Deficiency: The Vitamin B12 and Folic Acid Importance. Cellular and Molecular Neurobiology, 2015, 35, 899-911.	1.7	18
219	Evidence that Thiosulfate Inhibits Creatine Kinase Activity in Rat Striatum via Thiol Group Oxidation. Neurotoxicity Research, 2018, 34, 693-705.	1.3	18
220	Evidence that antioxidants prevent the inhibition of Na+,K(+)-ATPase activity induced by octanoic acid in rat cerebral cortex in vitro. Neurochemical Research, 2003, 28, 1255-1263.	1.6	17
221	Protective effect of antioxidants on brain oxidative damage caused by proline administration. Neuroscience Research, 2005, 52, 69-74.	1.0	17
222	α-Tocopherol and Ascorbic Acid Administration Prevents the Impairment of Brain Energy Metabolism of Hyperargininemic Rats. Cellular and Molecular Neurobiology, 2006, 26, 177-189.	1.7	17
223	Disturbance of redox homeostasis by ornithine and homocitrulline in rat cerebellum: A possible mechanism of cerebellar dysfunction in HHH syndrome. Life Sciences, 2013, 93, 161-168.	2.0	17
224	Homocysteine contribution to DNA damage in cystathionine β-synthase-deficient patients. Gene, 2014, 539, 270-274.	1.0	17
225	Deregulation of mitochondrial functions provoked by longâ€chain fatty acid accumulating in longâ€chain 3â€hydroxyacylâ€CoA dehydrogenase and mitochondrial permeability transition deficiencies in rat heart – mitochondrial permeability transition pore opening as a potential contributing pathomechanism of cardiac alterations in these disorders. FERS Journal, 2015, 282, 4714-4726	2.2	17
226	Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2192-2201.	1.8	17
227	Pathogenesis of brain damage in glutaric acidemia type I: Lessons from the genetic mice model. International Journal of Developmental Neuroscience, 2019, 78, 215-221.	0.7	17
228	Chronic administration of propionic acid reduces ganglioside N-acetylneuraminic acid concentration in cerebellum of young rats. Journal of the Neurological Sciences, 1998, 158, 121-124.	0.3	16
229	Effect of hypoxanthine on Na+,K+-ATPase activity and some parameters of oxidative stress in rat striatum. Brain Research, 2005, 1041, 198-204.	1.1	16
230	Morphological Alterations and Cell Death Provoked by the Branched-Chain α-Amino Acids Accumulating in Maple Syrup Urine Disease in Astrocytes from Rat Cerebral Cortex. Cellular and Molecular Neurobiology, 2005, 25, 851-867.	1.7	16
231	Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochemistry International, 2005, 46, 391-397.	1.9	16
232	The effects of the interactions between amino acids on pyruvate kinase activity from the brain cortex of young rats. International Journal of Developmental Neuroscience, 2005, 23, 509-514.	0.7	16
233	The Human Serotonin 1A Receptor Expressed in Neuronal Cells: Toward a Native Environment for Neuronal Receptors. Cellular and Molecular Neurobiology, 2006, 26, 923-940.	1.7	16
234	Guanidinoacetate Inhibits Glutamate Uptake in Rat Striatum of Rats at Different Ages. Neurochemical Research, 2007, 32, 959-964.	1.6	16

#	Article	IF	CITATIONS
235	Pristanic acid promotes oxidative stress in brain cortex of young rats: A possible pathophysiological mechanism for brain damage in peroxisomal disorders. Brain Research, 2011, 1382, 259-265.	1.1	16
236	2-Methylbutyrylglycine induces lipid oxidative damage and decreases the antioxidant defenses in rat brain. Brain Research, 2012, 1478, 74-82.	1.1	16
237	Disruption of Mitochondrial Homeostasis by Phytanic Acid in Cerebellum of Young Rats. Cerebellum, 2013, 12, 362-369.	1.4	16
238	Disturbance of energy and redox homeostasis and reduction of Na+,K+-ATPase activity provoked by in vivo intracerebral administration of ethylmalonic acid to young rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 759-767.	1.8	16
239	<i>In vitro</i> evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolismâ€related enzymes in rat cerebral cortex. International Journal of Developmental Neuroscience, 2015, 42, 68-75.	0.7	16
240	Intracerebral Glycine Administration Impairs Energy and Redox Homeostasis and Induces Glial Reactivity in Cerebral Cortex of Newborn Rats. Molecular Neurobiology, 2016, 53, 5864-5875.	1.9	16
241	Experimental Evidence that In Vivo Intracerebral Administration of L-2-Hydroxyglutaric Acid to Neonatal Rats Provokes Disruption of Redox Status and Histopathological Abnormalities in the Brain. Neurotoxicity Research, 2018, 33, 681-692.	1.3	16
242	Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats. Molecular Neurobiology, 2019, 56, 2760-2773.	1.9	16
243	A Possible Anti-Inflammatory Effect of Proline in the Brain Cortex and Cerebellum of Rats. Molecular Neurobiology, 2018, 55, 4068-4077.	1.9	16
244	Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochemical Research, 2002, 27, 947-952.	1.6	15
245	Effects of L-2-hydroxyglutaric acid on various parameters of the glutamatergic system in cerebral cortex of rats. Metabolic Brain Disease, 2003, 18, 233-243.	1.4	15
246	Alanine prevents the in vitro inhibition of glycolysis caused by phenylalanine in brain cortex of rats. Metabolic Brain Disease, 2003, 18, 87-94.	1.4	15
247	Branchedâ€chain amino acids accumulating in maple syrup urine disease induce morphological alterations in C6 glioma cells probably through reactive species. International Journal of Developmental Neuroscience, 2007, 25, 181-189.	0.7	15
248	Effects of cysteamine on oxidative status in cerebral cortex of rats. Metabolic Brain Disease, 2008, 23, 81-93.	1.4	15
249	Promotion of Lipid and Protein Oxidative Damage in Rat Brain by Ethylmalonic Acid. Neurochemical Research, 2010, 35, 298-305.	1.6	15
250	Dual mechanism of brain damage induced in vivo by the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Brain Research, 2011, 1369, 235-244.	1.1	15
251	Ethylmalonic acid impairs brain mitochondrial succinate and malate transport. Molecular Genetics and Metabolism, 2012, 105, 84-90.	0.5	15
252	Disruption of redox homeostasis in cerebral cortex of developing rats by acylcarnitines accumulating in mediumâ€chain acylâ€CoA dehydrogenase deficiency. International Journal of Developmental Neuroscience, 2012, 30, 383-390.	0.7	15

#	Article	IF	CITATIONS
253	3-Methylcrotonylglycine Disrupts Mitochondrial Energy Homeostasis and Inhibits Synaptic Na+,K+-ATPase Activity in Brain of Young Rats. Cellular and Molecular Neurobiology, 2012, 32, 297-307.	1.7	15
254	cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca 2+ homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1363-1372.	0.5	15
255	Experimental Evidence that 3-Methylglutaric Acid Disturbs Mitochondrial Function and Induced Oxidative Stress in Rat Brain Synaptosomes: New Converging Mechanisms. Neurochemical Research, 2016, 41, 2619-2626.	1.6	15
256	Induction of a Proinflammatory Response in Cortical Astrocytes by the Major Metabolites Accumulating in HMG-CoA Lyase Deficiency: the Role of ERK Signaling Pathway in Cytokine Release. Molecular Neurobiology, 2016, 53, 3586-3595.	1.9	15
257	α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats. Neurotoxicity Research, 2017, 32, 276-290.	1.3	15
258	Arginine administration reduces catalase activity in midbrain of rats. NeuroReport, 2002, 13, 1301-1304.	0.6	14
259	Alpha-Ketoisocaproic Acid Increases Phosphorylation of Intermediate Filament Proteins from Rat Cerebral Cortex by Mechanisms Involving Ca2+ and cAMP. Neurochemical Research, 2005, 30, 1139-1146.	1.6	14
260	Promotion of oxidative stress in kidney of rats loaded with cystine dimethyl ester. Pediatric Nephrology, 2007, 22, 1121-1128.	0.9	14
261	Evidence that 3â€hydroxyisobutyric acid inhibits key enzymes of energy metabolism in cerebral cortex of young rats. International Journal of Developmental Neuroscience, 2008, 26, 293-299.	0.7	14
262	The molecular landscape of propionic acidemia and methylmalonic aciduria in Latin America. Journal of Inherited Metabolic Disease, 2010, 33, 307-314.	1.7	14
263	Marked inhibition of Na+, K+ - ATPase activity and the respiratory chain by phytanic acid in cerebellum from young rats: possible underlying mechanisms of cerebellar ataxia in Refsum disease. Journal of Bioenergetics and Biomembranes, 2013, 45, 137-144.	1.0	14
264	Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: A role for oxidative stress in GA I neuropathology. Journal of the Neurological Sciences, 2014, 344, 105-113.	0.3	14
265	Protective effect of L-carnitine on Phenylalanine-induced DNA damage. Metabolic Brain Disease, 2015, 30, 925-933.	1.4	14
266	The effect of WIN 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience, 2015, 310, 578-588.	1.1	14
267	Experimental evidence that overexpression of NR2B glutamate receptor subunit is associated with brain vacuolation in adult glutaryl-CoA dehydrogenase deficient mice: A potential role for glutamatergic-induced excitotoxicity in GA I neuropathology. Journal of the Neurological Sciences, 2015, 359, 133-140.	0.3	14
268	Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome. Neurochemical Research, 2016, 41, 2190-2198.	1.6	14
269	2-Hydroxybutyrate and 4-hydroxybutyrate inhibit CO2 formation from labeled substrates by rat cerebral cortex. Biochemical Society Transactions, 1995, 23, 228S-228S.	1.6	13
270	In VitroPhosphorylation of Cytoskeletal Proteins in the Rat Cerebral Cortex Is Decreased by Propionic Acid. Experimental Neurology, 1997, 147, 238-247.	2.0	13

#	Article	IF	CITATIONS
271	Intrahippocampal administration of the branched-chain α-hydroxy acids accumulating in maple syrup urine disease compromises rat performance in aversive and non-aversive behavioral tasks. Journal of the Neurological Sciences, 2005, 232, 11-21.	0.3	13
272	Induction of S100B secretion in C6 astroglial cells by the major metabolites accumulating in glutaric acidemia type I. Metabolic Brain Disease, 2010, 25, 191-198.	1.4	13
273	Phytanic acid disturbs mitochondrial homeostasis in heart of young rats: a possible pathomechanism of cardiomyopathy in Refsum disease. Molecular and Cellular Biochemistry, 2012, 366, 335-343.	1.4	13
274	Neurochemical Evidence that the Metabolites Accumulating in 3-Methylcrotonyl-CoA Carboxylase Deficiency Induce Oxidative Damage in Cerebral Cortex of Young Rats. Cellular and Molecular Neurobiology, 2013, 33, 137-146.	1.7	13
275	Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Brain Research, 2015, 1620, 116-129.	1.1	13
276	Reduced Locomotor Activity of Rats Made Histidinemic by Injection of Histidine. Journal of Nutrition, 1989, 119, 1223-1227.	1.3	12
277	Inhibition of mitogen-activated proliferation of human peripheral lymphocytes in vitro by propionic acid. Clinical Science, 1999, 96, 99.	1.8	12
278	Detection of Organic Acidemias in Brazil. Archives of Medical Research, 2002, 33, 581-585.	1.5	12
279	Tryptophan reduces creatine kinase activity in the brain cortex of rats. International Journal of Developmental Neuroscience, 2004, 22, 95-101.	0.7	12
280	Evidence that intracellular Ca2+ mediates the effect of α-ketoisocaproic acid on the phosphorylating system of cytoskeletal proteins from cerebral cortex of immature rats. Journal of the Neurological Sciences, 2005, 238, 75-82.	0.3	12
281	Effect of In Vivo Administration of Ethylmalonic Acid on Energy Metabolism in Rat Tissues. Metabolic Brain Disease, 2006, 21, 28-38.	1.4	12
282	Energy Metabolism is Compromised in Skeletal Muscle of Rats Chronically-Treated with Glutaric Acid. Metabolic Brain Disease, 2007, 22, 111-123.	1.4	12
283	Glycine intrastriatal administration induces lipid and protein oxidative damage and alters the enzymatic antioxidant defenses in rat brain. Life Sciences, 2011, 89, 276-281.	2.0	12
284	Glycine Intracerebroventricular Administration Disrupts Mitochondrial Energy Homeostasis in Cerebral Cortex and Striatum of Young Rats. Neurotoxicity Research, 2013, 24, 502-511.	1.3	12
285	Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 2063-2074.	1.8	12
286	Impairment of <scp>GABA</scp> ergic system contributes to epileptogenesis in glutaric acidemia type I. Epilepsia, 2017, 58, 1771-1781.	2.6	12
287	Selective Screening of Fatty Acids Oxidation Defects and Organic Acidemias by Liquid Chromatography/tandem Mass Spectrometry Acylcarnitine Analysis in Brazilian Patients. Archives of Medical Research, 2018, 49, 205-212.	1.5	12
288	Bezafibrate In Vivo Administration Prevents 3-Methylglutaric Acid-Induced Impairment of Redox Status, Mitochondrial Biogenesis, and Neural Injury in Brain of Developing Rats. Neurotoxicity Research, 2019, 35, 809-822.	1.3	12

#	Article	IF	CITATIONS
289	Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochemistry International, 2022, 157, 105360.	1.9	12
290	Homocysteine inhibits butyrylcholinesterase activity in rat serum. Metabolic Brain Disease, 2003, 18, 187-194.	1.4	11
291	α-Keto-β-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. Journal of the Neurological Sciences, 2004, 217, 17-24.	0.3	11
292	Citrulline and Ammonia Accumulating in Citrullinemia Reduces Antioxidant Capacity of Rat Brain In Vitro. Metabolic Brain Disease, 2006, 21, 61-72.	1.4	11
293	D-Serine induces lipid and protein oxidative damage and decreases glutathione levels in brain cortex of rats. Brain Research, 2009, 1256, 34-42.	1.1	11
294	Chronic early postnatal administration of ethylmalonic acid to rats causes behavioral deficit. Behavioural Brain Research, 2009, 197, 364-370.	1.2	11
295	cis-4-decenoic acid provokes mitochondrial bioenergetic dysfunction in rat brain. Life Sciences, 2010, 87, 139-146.	2.0	11
296	Impairment of brain redox homeostasis caused by the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome in vivo. Metabolic Brain Disease, 2012, 27, 521-530.	1.4	11
297	Ethylmalonic Acid Induces Permeability Transition in Isolated Brain Mitochondria. Neurotoxicity Research, 2014, 26, 168-178.	1.3	11
298	Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: Possible implications for the neuropathology of glutaric acidemia type I. Journal of the Neurological Sciences, 2014, 346, 260-267.	0.3	11
299	Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats. Neurotoxicity Research, 2017, 32, 264-275.	1.3	11
300	Toxic Synergism Between Quinolinic Acid and Glutaric Acid in Neuronal Cells Is Mediated by Oxidative Stress: Insights to a New Toxic Model. Molecular Neurobiology, 2018, 55, 5362-5376.	1.9	11
301	Anandamide Reduces the Toxic Synergism Exerted by Quinolinic Acid and Glutaric Acid in Rat Brain Neuronal Cells. Neuroscience, 2019, 401, 84-95.	1.1	11
302	Screening for organic acidurias and aminoacidopathies in high-risk Brazilian patients: Eleven-year experience of a reference center. Genetics and Molecular Biology, 2019, 42, 178-185.	0.6	11
303	Disruption of mitochondrial functions and oxidative stress contribute to neurologic dysfunction in organic acidurias. Archives of Biochemistry and Biophysics, 2020, 696, 108646.	1.4	11
304	Disturbance of bioenergetics and calcium homeostasis provoked by metabolites accumulating in propionic acidemia in heart mitochondria of developing rats. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165682.	1.8	11
305	An improved specific laboratory test for homocystinuria. Clinica Chimica Acta, 1982, 125, 367-369.	0.5	10
306	Alpha-ketoisocaproate increases the in vitro 32P incorporation into intermediate filaments in cerebral cortex of rats. NeuroReport, 2000, 11, 3545-3550.	0.6	10

#	Article	IF	CITATIONS
307	Reduced Na+,K+-ATPase Activity in Erythrocyte Membranes from Patients with Phenylketonuria. Pediatric Research, 2001, 50, 56-60.	1.1	10
308	Kinetic studies on the inhibition of creatine kinase activity by branchedâ€chain αâ€amino acids in the brain cortex of rats. International Journal of Developmental Neuroscience, 2003, 21, 145-151.	0.7	10
309	Arginine administration reduces creatine kinase activity in rat cerebellum. Metabolic Brain Disease, 2007, 22, 13-23.	1.4	10
310	Influence of ketone bodies on oxidative stress parameters in brain of developing rats in vitro. Metabolic Brain Disease, 2008, 23, 411-425.	1.4	10
311	Chronic early postnatal glutaric acid administration causes cognitive deficits in the water maze. Behavioural Brain Research, 2008, 187, 411-416.	1.2	10
312	Inhibition of creatine kinase activity by lysine in rat cerebral cortex. Metabolic Brain Disease, 2009, 24, 349-360.	1.4	10
313	Neurochemical Evidence that Lysine Inhibits Synaptic Na+,K+-ATPase Activity and Provokes Oxidative Damage in Striatum of Young Rats In vivo. Neurochemical Research, 2011, 36, 205-214.	1.6	10
314	Neurochemical Evidence that Pristanic Acid Impairs Energy Production and Inhibits Synaptic Na+, K+-ATPase Activity in Brain of Young Rats. Neurochemical Research, 2011, 36, 1101-1107.	1.6	10
315	Neurodevelopmental and cognitive behavior of glutaryl-CoA dehydrogenase deficient knockout mice. Life Sciences, 2013, 92, 137-142.	2.0	10
316	Glycine Administration Alters MAPK Signaling Pathways and Causes Neuronal Damage in Rat Brain: Putative Mechanisms Involved in the Neurological Dysfunction in Nonketotic Hyperglycinemia. Molecular Neurobiology, 2018, 55, 741-750.	1.9	10
317	Acute lysine overload provokes marked striatum injury involving oxidative stress signaling pathways in glutaryl-CoA dehydrogenase deficient mice. Neurochemistry International, 2019, 129, 104467.	1.9	10
318	l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2420-2427.	1.8	10
319	Bezafibrate Prevents Glycine-Induced Increase of Antioxidant Enzyme Activities in Rat Striatum. Molecular Neurobiology, 2019, 56, 29-38.	1.9	10
320	Free Radical Scavengers Prevent Argininosuccinic Acid-Induced Oxidative Stress in the Brain of Developing Rats: a New Adjuvant Therapy for Argininosuccinate Lyase Deficiency?. Molecular Neurobiology, 2020, 57, 1233-1244.	1.9	10
321	Mitochondrial Dysfunction and Redox Homeostasis Impairment as Pathomechanisms of Brain Damage in Ethylmalonic Encephalopathy: Insights from Animal and Human Studies. Cellular and Molecular Neurobiology, 2020, , 1.	1.7	10
322	InÂvivo evidence that bezafibrate prevents oxidative stress and mitochondrial dysfunction caused by 3-methylglutaric acid in rat liver. Biochimie, 2020, 171-172, 187-196.	1.3	10
323	Evaluation of the effect of chronic administration of drugs on rat behavior in the water maze task. Brain Research Protocols, 2003, 12, 109-115.	1.7	9
324	Synaptic Plasma Membrane Na+, K+-ATPase Activity is Significantly Reduced by the α-Keto Acids Accumulating in Maple Syrup Urine Disease in Rat Cerebral Cortex. Metabolic Brain Disease, 2007, 22, 77-88.	1.4	9

#	Article	IF	CITATIONS
325	Creatine administration prevents Na+,K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Research, 2009, 1262, 81-88.	1.1	9
326	Evidence that the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome induce oxidative stress in brain of young rats. International Journal of Developmental Neuroscience, 2009, 27, 635-641.	0.7	9
327	<scp>d</scp> â€Serine administration provokes lipid oxidation and decreases the antioxidant defenses in rat striatum. International Journal of Developmental Neuroscience, 2010, 28, 297-301.	0.7	9
328	Evidence that glycine induces lipid peroxidation and decreases glutathione concentrations in rat cerebellum. Molecular and Cellular Biochemistry, 2014, 395, 125-134.	1.4	9
329	S-Adenosylmethionine Promotes Oxidative Stress and Decreases Na+, K+-ATPase Activity in Cerebral Cortex Supernatants of Adolescent Rats: Implications for the Pathogenesis of S-Adenosylhomocysteine Hydrolase Deficiency. Molecular Neurobiology, 2018, 55, 5868-5878.	1.9	9
330	Long Lasting High Lysine Diet Aggravates White Matter Injury in Glutaryl-CoA Dehydrogenase Deficient (Gcdhâ~'/â~') Mice. Molecular Neurobiology, 2019, 56, 648-657.	1.9	9
331	3-Hydroxy-3-Methylglutaric Acid Impairs Redox and Energy Homeostasis, Mitochondrial Dynamics, and Endoplasmic Reticulum–Mitochondria Crosstalk in Rat Brain. Neurotoxicity Research, 2020, 37, 314-325.	1.3	9
332	Intrahippocampal administration of the α-keto acids accumulating in maple syrup urine disease provokes learning deficits in rats. Pharmacology Biochemistry and Behavior, 2004, 77, 183-190.	1.3	8
333	In vitro evidence that d-serine disturbs the citric acid cycle through inhibition of citrate synthase activity in rat cerebral cortex. Brain Research, 2009, 1298, 186-193.	1.1	8
334	Experimental evidence that pristanic acid disrupts mitochondrial homeostasis in brain of young rats. Journal of Neuroscience Research, 2012, 90, 597-605.	1.3	8
335	Pristanic Acid Provokes Lipid, Protein, and DNA Oxidative Damage and Reduces the Antioxidant Defenses in Cerebellum of Young Rats. Cerebellum, 2014, 13, 751-759.	1.4	8
336	Evidence that 3-hydroxy-3-methylglutaric and 3-methylglutaric acids induce DNA damage in rat striatum. Metabolic Brain Disease, 2015, 30, 1055-1062.	1.4	8
337	Mevalonolactone disrupts mitochondrial functions and induces permeability transition pore opening in rat brain mitochondria: Implications for the pathogenesis of mevalonic aciduria. Neurochemistry International, 2017, 108, 133-145.	1.9	8
338	Experimental evidence that maleic acid markedly compromises glutamate oxidation through inhibition of glutamate dehydrogenase and α-ketoglutarate dehydrogenase activities in kidney of developing rats. Molecular and Cellular Biochemistry, 2019, 458, 99-112.	1.4	8
339	Disturbance of mitochondrial functions associated with permeability transition pore opening induced by cis-5-tetradecenoic and myristic acids in liver of adolescent rats. Mitochondrion, 2020, 50, 1-13.	1.6	8
340	Elevated levels of BDNF and cathepsin―d as possible peripheral markers of neurodegeneration in plasma of patients with glutaric acidemia type I. International Journal of Developmental Neuroscience, 2020, 80, 42-49.	0.7	8
341	Lipopolysaccharide-Elicited Systemic Inflammation Induces Selective Vulnerability of Cerebral Cortex and Striatum of Developing Glutaryl-CoA Dehydrogenase Deficient (Gcdhâ^'/â^') Mice to Oxidative Stress. Neurotoxicity Research, 2020, 38, 1024-1036.	1.3	8
342	Neuronal Death, Glial Reactivity, Microglia Activation, Oxidative Stress and Bioenergetics Impairment Caused by Intracerebroventricular Administration of D-2-hydroxyglutaric Acid to Neonatal Rats. Neuroscience, 2021, 471, 115-132.	1.1	8

#	Article	IF	CITATIONS
343	Intrastriatal hypoxanthine administration affects Na + ,K + â€ATPase, acetylcholinesterase and catalase activities in striatum, hippocampus and cerebral cortex of rats. International Journal of Developmental Neuroscience, 2006, 24, 411-417.	0.7	7
344	High urinary excretion of Nâ€(pyrroleâ€2 arboxyl) glycine in type II hyperprolinemia. Clinical Genetics, 1990, 37, 485-489.	1.0	7
345	Evidence that 2-methylacetoacetate induces oxidative stress in rat brain. Metabolic Brain Disease, 2010, 25, 261-267.	1.4	7
346	NMDA Receptors and Oxidative Stress Induced by the Major Metabolites Accumulating in HMG Lyase Deficiency Mediate Hypophosphorylation of Cytoskeletal Proteins in Brain From Adolescent Rats: Potential Mechanisms Contributing to the Neuropathology of This Disease. Neurotoxicity Research, 2015, 28, 239-252.	1.3	7
347	Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I. Molecular Neurobiology, 2017, 54, 4795-4805.	1.9	7
348	Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum. Mitochondrion, 2019, 47, 141-150.	1.6	7
349	Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy. Toxicology in Vitro, 2020, 62, 104665.	1.1	7
350	Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids. Frontiers in Genetics, 2020, 11, 598976.	1.1	7
351	Clinical, biochemical and molecular findings of 24 Brazilian patients with glutaric acidemia type 1: 4 novel mutations in the GCDH gene. Metabolic Brain Disease, 2021, 36, 205-212.	1.4	7
352	The mitochondrialâ€ŧargeted reactive species scavenger JP4 â€039 prevents sulfiteâ€induced alterations in antioxidant defenses, energy transfer, and cell death signaling in striatum of rats. Journal of Inherited Metabolic Disease, 2021, 44, 481-491.	1.7	7
353	Propionic and methylmalonic acids increase cAMP levels in slices of cerebral cortex of young rats via adrenergic and glutamatergic mechanisms. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 460-466.	1.8	6
354	Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice. Neurotoxicity Research, 2018, 33, 593-606.	1.3	6
355	Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Frontiers in Molecular Neuroscience, 2019, 12, 327.	1.4	6
356	Neurochemical effects ofl-pyroglutamic acid. Neurochemical Research, 1995, 20, 1437-1441.	1.6	5
357	Inhibition of the mitochondrial respiratory chain by alanine in rat cerebral cortex. Metabolic Brain Disease, 2002, 17, 123-130.	1.4	5
358	Inhibition of mitochondrial creatine kinase activity by D-2-hydroxyglutaric acid in cerebellum of young rats. Neurochemical Research, 2003, 28, 1329-1337.	1.6	5
359	In Vitro Homocysteine Inhibits Platelet Na+, K+-ATPase and Serum Butyrylcholinesterase Activities of Young Rats. Metabolic Brain Disease, 2003, 18, 273-280.	1.4	5
360	Cysteamine prevents and reverses the inhibition of pyruvate kinase activity caused by cystine in rat heart. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1689, 114-119.	1.8	5

#	Article	IF	CITATIONS
361	Inhibition of creatine kinase activity from rat cerebral cortex by 3-hydroxykynurenine. Brain Research, 2006, 1124, 188-196.	1.1	5
362	N-acetylaspartic acid impairs enzymatic antioxidant defenses and enhances hydrogen peroxide concentration in rat brain. Metabolic Brain Disease, 2010, 25, 251-259.	1.4	5
363	Evaluation of Oxidative Stress Parameters and Energy Metabolism in Cerebral Cortex of Rats Subjected to Sarcosine Administration. Molecular Neurobiology, 2017, 54, 4496-4506.	1.9	5
364	Prevention by L-carnitine of DNA damage induced by 3-hydroxy-3-methylglutaric and 3-methylglutaric acids and experimental evidence of lipid and DNA damage in patients with 3-hydroxy-3-methylglutaric aciduria. Archives of Biochemistry and Biophysics, 2019, 668, 16-22.	1.4	5
365	Protective effects of L-carnitine on behavioral alterations and neuroinflammation in striatum of glutaryl-COA dehydrogenase deficient mice. Archives of Biochemistry and Biophysics, 2021, 709, 108970.	1.4	5
366	Inhibition of phytohaemagglutinin-induced lymphocyte blastogenesis by serum from pregnant women: correlation between cortisol level and in vitro immunosuppression. European Journal of Endocrinology, 1985, 109, 411-417.	1.9	4
367	Effects of acute and chronic administration of methylmalonic and propionic acids on the in vitro incorporation of 32P into cytoskeletal proteins from cerebral cortex of young rats. Neurochemistry International, 1998, 33, 75-82.	1.9	4
368	Inhibition of Creatine Kinase Activity by Cystine in the Kidney of Young Rats. Pediatric Research, 2006, 60, 190-195.	1.1	4
369	Chronic postnatal ornithine administration to rats provokes learning deficit in the open field task. Metabolic Brain Disease, 2012, 27, 479-486.	1.4	4
370	Ornithine In Vivo Administration Disrupts Redox Homeostasis and Decreases Synaptic Na+, K+-ATPase Activity in Cerebellum of Adolescent Rats: Implications for the Pathogenesis of Hyperornithinemia-Hyperammonemia-Homocitrullinuria (HHH) Syndrome. Cellular and Molecular Neurobiology, 2015, 35, 797-806.	1.7	4
371	Mechanistic Bases of Neurotoxicity Provoked by Fatty Acids Accumulating in MCAD and LCHAD Deficiencies. FIRE Forum for International Research in Education, 2017, 5, 232640981770147.	0.7	4
372	High vulnerability of the heart and liver to 3â€hydroxypalmitic acid–induced disruption of mitochondrial functions in intact cell systems. Journal of Cellular Biochemistry, 2018, 119, 7678-7686.	1.2	4
373	L-carnitine protects DNA oxidative damage induced by phenylalanine and its keto acid derivatives in neural cells: a possible pathomechanism and adjuvant therapy for brain injury in phenylketonuria. Metabolic Brain Disease, 2021, 36, 1957-1968.	1.4	4
374	Antioxidant system disturbances and mitochondrial dysfunction induced by 3-methyglutaric acid in rat heart are prevented by bezafibrate. European Journal of Pharmacology, 2022, 924, 174950.	1.7	4
375	Disturbance of Mitochondrial Dynamics, Endoplasmic Reticulum–Mitochondria Crosstalk, Redox Homeostasis, and Inflammatory Response in the Brain of Clutaryl-CoA Dehydrogenase-Deficient Mice: Neuroprotective Effects of Bezafibrate. Molecular Neurobiology, 0, , .	1.9	4
376	Relationship between serum immunoglobulin G and alpha-fetoprotein levels during human pregnancy. Journal of Perinatal Medicine, 1987, 15, 251-257.	0.6	3
377	Inborn Errors of Metabolism. Clinical Pediatrics, 1989, 28, 494-497.	0.4	3
378	Inhibition of citrate oxidation in vitro by 2-hydroxybutyrate and 4-hydroxybutyrate in cerebral cortex of young rats. Biochemical Society Transactions, 1995, 23, 229S-229S.	1.6	3

#	Article	IF	CITATIONS
379	Platelet Na+,K+-ATPase activity as a possible peripheral marker for the neurotoxic effects of phenylalanine in phenylketonuria. Metabolic Brain Disease, 2000, 15, 115-121.	1.4	3
380	Reduction of butyrylcholinesterase activity in plasma from patients with disorders of propionate metabolism is prevented by treatment with L-carnitine and protein restriction. Clinical Biochemistry, 2012, 45, 77-81.	0.8	3
381	Glutaric Acid Neurotoxicity: Mechanisms and Actions. , 2021, , 1-35.		3
382	Ethylmalonic acid impairs bioenergetics by disturbing succinate and glutamate oxidation and induces mitochondrial permeability transition pore opening in rat cerebellum. Journal of Neurochemistry, 2021, 158, 262-281.	2.1	3
383	S-adenosylmethionine induces mitochondrial dysfunction, permeability transition pore opening and redox imbalance in subcellular preparations of rat liver. Journal of Bioenergetics and Biomembranes, 2021, 53, 525-539.	1.0	3
384	Relationship between some obstetric landmarks and the concentration of alpha-fetoprotein in maternal blood. Journal of Perinatal Medicine, 1986, 14, 115-121.	0.6	2
385	Detection of metabolic disorders in high-risk patients: a pilot study in Salvador, Bahia. Arquivos De Neuro-Psiquiatria, 1997, 55, 209-212.	0.3	2
386	Clinical and biochemical findings in 7 patients with X-linked adrenoleukodystrophy treated with Lorenzo's Oil. Genetics and Molecular Biology, 2000, 23, 697-701.	0.6	2
387	Monitoring of Phenylalanine Levels in Patients with Phenylketonuria Using Dried Blood Spots: a Comparison of Two Methods. Journal of Inborn Errors of Metabolism and Screening, 0, 8, .	0.3	2
388	Plinia trunciflora Extract Administration Prevents HI-Induced Oxidative Stress, Inflammatory Response, Behavioral Impairments, and Tissue Damage in Rats. Nutrients, 2022, 14, 395.	1.7	2
389	Immunomodulatory action of amino acids on lymphocyte blastogenesis. Biochemical Society Transactions, 1992, 20, 176S-176S.	1.6	1
390	Effect of proline on creatine kinase activity in rat brain. Metabolic Brain Disease, 2003, 18, 169-177.	1.4	1
391	The Role of Hyperhomocysteinemia in Disease. FIRE Forum for International Research in Education, 2018, 6, 232640981879624.	0.7	1
392	Glutaric Acidemia Type 1: An Inherited Neurometabolic Disorder of Intoxication. , 2021, , 1-25.		1
393	S12.32 Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial dicarboxylate transport: Implications for the methylmalonic acidemia physiophatology. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, S83.	0.5	0
394	Disruption of oxidative phosphorylation and synaptic Na+, K+-ATPase activity by pristanic acid in cerebellum of young rats. Life Sciences, 2014, 94, 67-73.	2.0	0
395	Intracerebroventricular injection of glycine alters enzymatic antioxidant defenses in rat striatum: prevention by bezafibrate. Free Radical Biology and Medicine, 2017, 108, S34.	1.3	0

#	Article	IF	CITATIONS
397	Increased susceptibility to quinolinic acidâ€induced seizures and longâ€term changes in brain oscillations in an animal model of glutaric acidemia type I. Journal of Neuroscience Research, 2022, 100, 992-1007.	1.3	0