Ming-Hua Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6564397/publications.pdf

Version: 2024-02-01

687363 580821 28 657 13 25 citations h-index g-index papers 28 28 28 1144 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeted Paclitaxel by Conjugation to Iron Oxide and Gold Nanoparticles. Journal of the American Chemical Society, 2009, 131, 66-68.	13.7	177
2	Design and Synthesis of Benzimidazole-Chalcone Derivatives as Potential Anticancer Agents. Molecules, 2019, 24, 3259.	3.8	56
3	Development of flexible electrochemical impedance spectroscopy-based biosensing platform for rapid screening of SARS-CoV-2 inhibitors. Biosensors and Bioelectronics, 2021, 183, 113213.	10.1	44
4	Development of theranostic active-targeting boron-containing gold nanoparticles for boron neutron capture therapy (BNCT). Colloids and Surfaces B: Biointerfaces, 2019, 183, 110387.	5.0	38
5	Directly Thiolated Modification onto the Surface of Detonation Nanodiamonds. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 7198-7203.	8.0	36
6	Synthesis and Evaluation of Aminothiazole-Paeonol Derivatives as Potential Anticancer Agents. Molecules, 2016, 21, 145.	3.8	33
7	New nordihydroguaiaretic acid derivatives as anti-HIV agents. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1884-1888.	2.2	32
8	Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents. European Journal of Medicinal Chemistry, 2015, 90, 428-435.	5.5	30
9	Synthesis and Structure-Activity Relationships of Imidazole-Coumarin Conjugates against Hepatitis C Virus. Molecules, 2016, 21, 228.	3.8	24
10	Treatment with a new benzimidazole derivative bearing a pyrrolidine side chain overcomes sorafenib resistance in hepatocellular carcinoma. Scientific Reports, 2019, 9, 17259.	3.3	23
11	Treatment with a New Barbituric Acid Derivative Exerts Antiproliferative and Antimigratory Effects against Sorafenib Resistance in Hepatocellular Carcinoma. Molecules, 2020, 25, 2856.	3.8	16
12	Domino Reaction for the Synthesis of Polysubstituted Pyrroles and Lamellarin R. Journal of Organic Chemistry, 2020, 85, 9835-9843.	3.2	16
13	Novel Arylhydrazone-Conjugated Gold Nanoparticles with DNA-Cleaving Ability: The First DNA-Nicking Nanomaterial. Bioconjugate Chemistry, 2007, 18, 1709-1712.	3.6	14
14	Design and synthesis of pyridine-pyrazole-sulfonate derivatives as potential anti-HBV agents. MedChemComm, 2016, 7, 832-836.	3.4	14
15	Evaluation of LPS-Induced Acute Lung Injury Attenuation in Rats by Aminothiazole-Paeonol Derivatives. Molecules, 2017, 22, 1605.	3.8	13
16	Antifibrotic Effects of a Barbituric Acid Derivative on Liver Fibrosis by Blocking the NF-κB Signaling Pathway in Hepatic Stellate Cells. Frontiers in Pharmacology, 2020, 11, 388.	3.5	13
17	Leucettamine B analogs and their carborane derivative as potential anti-cancer agents: Design, synthesis, and biological evaluation. Bioorganic Chemistry, 2020, 98, 103729.	4.1	12
18	Boron-rich, cytocompatible block copolymer nanoparticles by polymerization-induced self-assembly. Polymer Chemistry, 2021, 12, 50-56.	3.9	12

#	Article	IF	CITATIONS
19	Drug delivery system design and development for boron neutron capture therapy on cancer treatment. Applied Radiation and Isotopes, 2014, 88, 89-93.	1.5	11
20	Development of MRI-Detectable Boron-Containing Gold Nanoparticle-Encapsulated Biodegradable Polymeric Matrix for Boron Neutron Capture Therapy (BNCT). International Journal of Molecular Sciences, 2021, 22, 8050.	4.1	11
21	A paeonol derivative, YPH-PA3 promotes the differentiation of monocyte/macrophage lineage precursor cells into osteoblasts and enhances their autophagy. European Journal of Pharmacology, 2018, 832, 104-113.	3.5	7
22	Development of nordihydroguaiaretic acid derivatives as potential multidrug-resistant selective agents for cancer treatment. RSC Advances, 2015, 5, 107833-107838.	3.6	6
23	Characterization of Novel α-Mangostin and Paeonol Derivatives With Cancer-Selective Cytotoxicity. Molecular Cancer Therapeutics, 2022, 21, 257-270.	4.1	5
24	Low-dose paeonol derivatives alleviate lipid accumulation. RSC Advances, 2015, 5, 5652-5656.	3.6	4
25	Microwave assistance of labeling hippuric acid by I-131. Applied Radiation and Isotopes, 2014, 89, 53-57.	1.5	3
26	Mild and Efficient Copper-Catalyzed Synthesis of Trisubstituted Pyrroles. Synthesis, 2021, 53, 2212-2218.	2.3	3
27	Hepatocellular Carcinoma Targeting Agents: Conjugates of Nitroimidazoles with Trimethyl Nordihydroguaiaretic Acid. ChemMedChem, 2014, 9, 1030-1037.	3.2	2
28	4-Methoxy Sulfonyl Paeonol Inhibits Hepatic Stellate Cell Activation and Liver Fibrosis by Blocking the TGF-Î ² 1/Smad, PDGF-BB/MAPK and Akt Signaling Pathways. Applied Sciences (Switzerland), 2020, 10, 5941.	2.5	2