List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6563783/publications.pdf Version: 2024-02-01

KODRINIAN LÃ**(**RMANN

#	Article	IF	CITATIONS
1	Emerging trends in the stabilization of amorphous drugs. International Journal of Pharmaceutics, 2013, 453, 65-79.	2.6	360
2	Recent advances in co-amorphous drug formulations. Advanced Drug Delivery Reviews, 2016, 100, 116-125.	6.6	350
3	Coamorphous Drug Systems: Enhanced Physical Stability and Dissolution Rate of Indomethacin and Naproxen. Molecular Pharmaceutics, 2011, 8, 1919-1928.	2.3	302
4	Amino acids as co-amorphous stabilizers for poorly water soluble drugs – Part 1: Preparation, stability and dissolution enhancement. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 873-881.	2.0	246
5	Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 159-169.	2.0	197
6	Amino acids as co-amorphous stabilizers for poorly water-soluble drugs – Part 2: Molecular interactions. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 882-888.	2.0	153
7	Refining stability and dissolution rate of amorphous drug formulations. Expert Opinion on Drug Delivery, 2014, 11, 977-989.	2.4	119
8	Tailoring controlled-release oral dosage forms by combining inkjet and flexographic printing techniques. European Journal of Pharmaceutical Sciences, 2012, 47, 615-623.	1.9	112
9	Comparative Study of Different Methods for the Prediction of Drug–Polymer Solubility. Molecular Pharmaceutics, 2015, 12, 3408-3419.	2.3	111
10	Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline. Pharmaceutics, 2014, 6, 416-435.	2.0	105
11	Evaluation of different substrates for inkjet printing of rasagiline mesylate. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 1075-1083.	2.0	101
12	Printing technologies in fabrication of drug delivery systems. Expert Opinion on Drug Delivery, 2013, 10, 1711-1723.	2.4	101
13	Cellulose nanofibers as excipient for the delivery of poorly soluble drugs. International Journal of Pharmaceutics, 2017, 533, 285-297.	2.6	98
14	Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy. Molecular Pharmaceutics, 2015, 12, 3062-3068.	2.3	97
15	A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. International Journal of Pharmaceutics, 2013, 453, 80-87.	2.6	95
16	Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. Journal of Pharmacy and Pharmacology, 2016, 68, 615-624.	1.2	95
17	Supersaturating drug delivery systems: The potential of co-amorphous drug formulations. International Journal of Pharmaceutics, 2017, 532, 1-12.	2.6	93
18	Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs. Journal of Physical Chemistry B, 2018, 122, 2803-2808.	1.2	93

#	Article	IF	CITATIONS
19	Amino Acids as Co-amorphous Excipients for Simvastatin and Glibenclamide: Physical Properties and Stability. Molecular Pharmaceutics, 2014, 11, 2381-2389.	2.3	88
20	A Step Toward Development of Printable Dosage Forms for Poorly Soluble Drugs. Journal of Pharmaceutical Sciences, 2013, 102, 3694-3704.	1.6	85
21	Behavior of printable formulations of loperamide and caffeine on different substrates—Effect of print density in inkjet printing. International Journal of Pharmaceutics, 2013, 453, 488-497.	2.6	85
22	Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin–arginine. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 44-52.	2.0	80
23	Development of a screening method for co-amorphous formulations of drugs and amino acids. European Journal of Pharmaceutical Sciences, 2016, 95, 28-35.	1.9	78
24	Co-former selection for co-amorphous drug-amino acid formulations. International Journal of Pharmaceutics, 2019, 557, 366-373.	2.6	76
25	Formation Mechanism of Coamorphous Drug–Amino Acid Mixtures. Molecular Pharmaceutics, 2015, 12, 2484-2492.	2.3	72
26	Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, In Vitro and In Vivo Performance, and New Formulation Strategies. Pharmaceutics, 2021, 13, 389.	2.0	71
27	On the role of salt formation and structural similarity of co-formers in co-amorphous drug delivery systems. International Journal of Pharmaceutics, 2018, 535, 86-94.	2.6	65
28	Influence of variation in molar ratio on co-amorphous drug-amino acid systems. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 32-39.	2.0	64
29	Solid cellulose nanofiber based foams – Towards facile design of sustained drug delivery systems. Journal of Controlled Release, 2016, 244, 74-82.	4.8	62
30	Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers. Journal of Pharmaceutical Sciences, 2017, 106, 302-312.	1.6	61
31	Application of a Salt Coformer in a Co-Amorphous Drug System Dramatically Enhances the Glass Transition Temperature: A Case Study of the Ternary System Carbamazepine, Citric Acid, and <scp>l</scp> -Arginine. Molecular Pharmaceutics, 2018, 15, 2036-2044.	2.3	61
32	Amorphous drugs and dosage forms. Journal of Drug Delivery Science and Technology, 2013, 23, 403-408.	1.4	57
33	Performance comparison between crystalline and co-amorphous salts of indomethacin-lysine. International Journal of Pharmaceutics, 2017, 533, 138-144.	2.6	57
34	Organic acids as co-formers for co-amorphous systems – Influence of variation in molar ratio on the physicochemical properties of the co-amorphous systems. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 25-32.	2.0	56
35	Improvement of dissolution rate of indomethacin by inkjet printing. European Journal of Pharmaceutical Sciences, 2015, 75, 91-100.	1.9	55
36	Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding. Pharmaceutics, 2011, 3, 706-722.	2.0	53

#	Article	IF	CITATIONS
37	Investigation of physical properties and stability of indomethacin–cimetidine and naproxen–cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling. Journal of Pharmacy and Pharmacology, 2016, 68, 36-45.	1.2	53
38	Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. European Journal of Pharmaceutical Sciences, 2016, 87, 164-173.	1.9	51
39	The significance of the amorphous potential energy landscape for dictating glassy dynamics and driving solid-state crystallisation. Physical Chemistry Chemical Physics, 2017, 19, 30039-30047.	1.3	51
40	The Role of Glass Transition Temperatures in Coamorphous Drug–Amino Acid Formulations. Molecular Pharmaceutics, 2018, 15, 4247-4256.	2.3	49
41	Transformations between Co-Amorphous and Co-Crystal Systems and Their Influence on the Formation and Physical Stability of Co-Amorphous Systems. Molecular Pharmaceutics, 2019, 16, 1294-1304.	2.3	45
42	Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica. Journal of Pharmaceutical Sciences, 2018, 107, 149-155.	1.6	40
43	Aspartame as a co-former in co-amorphous systems. International Journal of Pharmaceutics, 2018, 549, 380-387.	2.6	40
44	Glass Forming Ability of Amorphous Drugs Investigated by Continuous Cooling and Isothermal Transformation. Molecular Pharmaceutics, 2016, 13, 3318-3325.	2.3	39
45	Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ. International Journal of Pharmaceutics, 2017, 519, 343-351.	2.6	39
46	Visualization and Non-Destructive Quantification of Inkjet-Printed Pharmaceuticals on Different Substrates Using Raman Spectroscopy and Raman Chemical Imaging. Pharmaceutical Research, 2017, 34, 1023-1036.	1.7	38
47	Characterization of Amorphous and Co-Amorphous Simvastatin Formulations Prepared by Spray Drying. Molecules, 2015, 20, 21532-21548.	1.7	36
48	Evaluation of Drug–Polymer Solubility Curves Through Formal Statistical Analysis: Comparison of Preparation Techniques. Journal of Pharmaceutical Sciences, 2015, 104, 44-51.	1.6	36
49	Cellulose Nanopaper and Nanofoam for Patientâ€Tailored Drug Delivery. Advanced Materials Interfaces, 2017, 4, 1600655.	1.9	36
50	Quantification of microwave-induced amorphization of celecoxib in PVP tablets using transmission Raman spectroscopy. European Journal of Pharmaceutical Sciences, 2018, 117, 62-67.	1.9	35
51	In vitro and in vivo comparison between crystalline and co-amorphous salts of naproxen-arginine. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 192-199.	2.0	35
52	Influence of Glass Forming Ability on the Physical Stability of Supersaturated Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2019, 108, 2561-2569.	1.6	35
53	Preparation and recrystallization behavior of spray-dried co-amorphous naproxen–indomethacin. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 72-81.	2.0	34
54	Influence of preparation technique on co-amorphization of carvedilol with acidic amino acids. International Journal of Pharmaceutics, 2018, 552, 407-413.	2.6	34

#	Article	IF	CITATIONS
55	Influence of the cooling rate and the blend ratio on the physical stability of co-amorphous naproxen/indomethacin. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 109, 140-148.	2.0	32
56	Elucidating the Molecular Interactions Occurring during Drug Precipitation of Weak Bases from Lipid-Based Formulations: A Case Study with Cinnarizine and a Long Chain Self-Nanoemulsifying Drug Delivery System. Molecular Pharmaceutics, 2015, 12, 4067-4076.	2.3	30
57	Glass solution formation in water - In situ amorphization of naproxen and ibuprofen with Eudragit® E PO. Journal of Drug Delivery Science and Technology, 2016, 34, 32-40.	1.4	30
58	Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder. Molecular Pharmaceutics, 2017, 14, 4675-4684.	2.3	30
59	The Influence of Polymers on the Supersaturation Potential of Poor and Good Glass Formers. Pharmaceutics, 2018, 10, 164.	2.0	30
60	Direct Measurement of Amorphous Solubility. Analytical Chemistry, 2019, 91, 7411-7417.	3.2	30
61	Dipeptides as co-formers in co-amorphous systems. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 68-76.	2.0	30
62	Influence of PVP molecular weight on the microwave assisted in situ amorphization of indomethacin. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 62-69.	2.0	29
63	Is there a correlation between the glass forming ability of a drug and its supersaturation propensity?. International Journal of Pharmaceutics, 2018, 538, 243-249.	2.6	28
64	Melt Extrusion of High-Dose Co-Amorphous Drug-Drug Combinations. Pharmaceutical Research, 2017, 34, 2689-2697.	1.7	27
65	The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity. International Journal of Pharmaceutics: X, 2019, 1, 100008.	1.2	27
66	Solid state properties and drug release behavior of co-amorphous indomethacin-arginine tablets coated with Kollicoat® Protect. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 150-160.	2.0	26
67	A fast and reliable DSC-based method to determine the monomolecular loading capacity of drugs with good glass-forming ability in mesoporous silica. International Journal of Pharmaceutics, 2018, 544, 153-157.	2.6	26
68	The influence of drug and polymer particle size on the in situ amorphization using microwave irradiation. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 77-84.	2.0	24
69	The influence of co-formers on the dissolution rates of co-amorphous sulfamerazine/excipient systems. International Journal of Pharmaceutics, 2016, 504, 20-26.	2.6	22
70	Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations. Pharmaceutics, 2018, 10, 47.	2.0	22
71	Microwave-Induced In Situ Amorphization: A New Strategy for Tackling the Stability Issue of Amorphous Solid Dispersions. Pharmaceutics, 2020, 12, 655.	2.0	22
72	Using dextran of different molecular weights to achieve faster freeze-drying and improved storage stability of lactate dehydrogenase. Pharmaceutical Development and Technology, 2019, 24, 323-328.	1.1	21

#	Article	IF	CITATIONS
73	Whey proteins as stabilizers in amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 2019, 128, 144-151.	1.9	21
74	Improving the drug load and in vitro performance of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) using polymeric precipitation inhibitors. International Journal of Pharmaceutics, 2020, 575, 118960.	2.6	21
75	Influence of preparation pathway on the glass forming ability. International Journal of Pharmaceutics, 2017, 521, 232-238.	2.6	20
76	Floating solid cellulose nanofibre nanofoams for sustained release of the poorly soluble model drug furosemide. Journal of Pharmacy and Pharmacology, 2017, 69, 1477-1484.	1.2	19
77	Tailor-made solvents for pharmaceutical use? Experimental and computational approach for determining solubility in deep eutectic solvents (DES). International Journal of Pharmaceutics: X, 2019, 1, 100034.	1.2	18
78	Efflux Inhibitor Bicalutamide Increases Oral Bioavailability of the Poorly Soluble Efflux Substrate Docetaxel in Co-Amorphous Anti-Cancer Combination Therapy. Molecules, 2019, 24, 266.	1.7	18
79	Comparison of co-former performance in co-amorphous formulations: Single amino acids, amino acid physical mixtures, amino acid salts and dipeptides as co-formers. European Journal of Pharmaceutical Sciences, 2021, 156, 105582.	1.9	18
80	Solid nanofoams based on cellulose nanofibers and indomethacin—the effect of processing parameters and drug content on material structure. International Journal of Pharmaceutics, 2017, 526, 291-299.	2.6	17
81	In situ co-amorphisation of arginine with indomethacin or furosemide during immersion in an acidic medium – A proof of concept study. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 151-160.	2.0	17
82	Characterising glass transition temperatures and glass dynamics in mesoporous silica-based amorphous drugs. Physical Chemistry Chemical Physics, 2019, 21, 19686-19694.	1.3	17
83	Process Optimization and Upscaling of Spray-Dried Drug-Amino acid Co-Amorphous Formulations. Pharmaceutics, 2019, 11, 24.	2.0	17
84	Predictive identification of co-formers in co-amorphous systems. European Journal of Pharmaceutical Sciences, 2021, 157, 105636.	1.9	17
85	Design of Inhalable Solid Dosage Forms of Budesonide and Theophylline for Pulmonary Combination Therapy. AAPS PharmSciTech, 2019, 20, 137.	1.5	16
86	Constraints on CaCO3 precipitation in superabsorbent polymer by aerobic bacteria. Applied Microbiology and Biotechnology, 2020, 104, 365-375.	1.7	16
87	Impact of drug loading in mesoporous silica-amorphous formulations on the physical stability of drugs with high recrystallization tendency. International Journal of Pharmaceutics: X, 2019, 1, 100026.	1.2	15
88	The Influence of Pressure on the Intrinsic Dissolution Rate of Amorphous Indomethacin. Pharmaceutics, 2014, 6, 481-493.	2.0	14
89	In situ co-amorphisation in coated tablets – The combination of carvedilol with aspartic acid during immersion in an acidic medium. International Journal of Pharmaceutics, 2019, 558, 357-366.	2.6	14
90	Stabilized Amorphous Solid Dispersions with Small Molecule Excipients. Advances in Delivery Science and Technology, 2014, , 613-636.	0.4	13

#	Article	IF	CITATIONS
91	Properties of the Sodium Naproxen-Lactose-Tetrahydrate Co-Crystal upon Processing and Storage. Molecules, 2016, 21, 509.	1.7	13
92	Improvement of the physicochemical properties of Co-amorphous naproxen-indomethacin by naproxen-sodium. International Journal of Pharmaceutics, 2017, 526, 88-94.	2.6	13
93	Undesired co-amorphisation of indomethacin and arginine during combined storage at high humidity conditions. International Journal of Pharmaceutics, 2018, 544, 172-180.	2.6	13
94	Convection-Induced vs. Microwave Radiation-Induced in situ Drug Amorphization. Molecules, 2020, 25, 1068.	1.7	12
95	The Influence of Temperature and Viscosity of Polyethylene Glycol on the Rate of Microwave-Induced In Situ Amorphization of Celecoxib. Molecules, 2021, 26, 110.	1.7	12
96	Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media. Die Pharmazie, 2015, 70, 452-7.	0.3	12
97	Formulation of co-amorphous systems from naproxen and naproxen sodium and in situ monitoring of physicochemical state changes during dissolution testing by Raman spectroscopy. International Journal of Pharmaceutics, 2020, 587, 119662.	2.6	11
98	The Use of Glycerol as an Enabling Excipient for Microwave-Induced In Situ Drug Amorphization. Journal of Pharmaceutical Sciences, 2021, 110, 155-163.	1.6	11
99	Deliquescence Behavior of Deep Eutectic Solvents. Applied Sciences (Switzerland), 2021, 11, 1601.	1.3	11
100	Influence of the Polymer Glass Transition Temperature and Molecular Weight on Drug Amorphization Kinetics Using Ball Milling. Pharmaceutics, 2020, 12, 483.	2.0	9
101	Quantification of anaerobic thermophilic endospores in marine sediment by microcalorimetry, and its use in bioprospecting for gas and oil. Limnology and Oceanography: Methods, 2017, 15, 519-530.	1.0	8
102	Influence of water of crystallization on the ternary phase behavior of a drug and deep eutectic solvent. Journal of Molecular Liquids, 2020, 315, 113727.	2.3	8
103	Utilizing Laser Activation of Photothermal Plasmonic Nanoparticles to Induce On-Demand Drug Amorphization inside a Tablet. Molecular Pharmaceutics, 2021, 18, 2254-2262.	2.3	8
104	Microwave induced in situ amorphisation facilitated by crystalline hydrates. European Journal of Pharmaceutical Sciences, 2021, 163, 105858.	1.9	8
105	Multivariate Quantification of the Solid State Phase Composition of Co-Amorphous Naproxen-Indomethacin. Molecules, 2015, 20, 19571-19587.	1.7	7
106	Microwave-Induced in Situ Drug Amorphization Using a Mixture of Polyethylene Glycol and Polyvinylpyrrolidone. Journal of Pharmaceutical Sciences, 2021, 110, 3221-3229.	1.6	7
107	Hot Melt Coating of Amorphous Carvedilol. Pharmaceutics, 2020, 12, 519.	2.0	6
108	Hyperthermia-Induced In Situ Drug Amorphization by Superparamagnetic Nanoparticles in Oral Dosage Forms. ACS Applied Materials & Interfaces, 2022, 14, 21978-21988.	4.0	5

#	Article	IF	CITATIONS
109	Investigation into the role of the polymer in enhancing microwave-induced in situ amorphization. International Journal of Pharmaceutics, 2021, 609, 121157.	2.6	4
110	Enabling formulations of aprepitant: in vitro and in vivo comparison of nanocrystalline, amorphous and deep eutectic solvent based formulations. International Journal of Pharmaceutics: X, 2021, 3, 100083.	1.2	3
111	Amorphous drug stabilization using mesoporous materials. , 2020, , 151-166.		2
112	Studying the Impact of the Temperature and Sorbed Water during Microwave-Induced In Situ Amorphization: A Case Study of Celecoxib and Polyvinylpyrrolidone. Pharmaceutics, 2021, 13, 886.	2.0	2
113	The Influence of Drug–Polymer Solubility on Laser-Induced In Situ Drug Amorphization Using Photothermal Plasmonic Nanoparticles. Pharmaceutics, 2021, 13, 917.	2.0	1
114	<i>In situ</i> dissolution analysis of pharmaceutical dosage forms using coherent anti-Stokes Raman scattering (CARS) microscopy. Proceedings of SPIE, 2014, , .	0.8	0
115	Special issue on "Formulation strategies and manufacturing technologies to enhance non-invasive drug delivery― Asian Journal of Pharmaceutical Sciences, 2018, 13, 505-506.	4.3	Ο
116	The Effect of the Molecular Weight of Polyvinylpyrrolidone and the Model Drug on Laser-Induced In Situ Amorphization. Molecules, 2021, 26, 4035.	1.7	0