List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6563722/publications.pdf Version: 2024-02-01

Μλατι Διώελ

#	Article	IF	CITATIONS
1	Mad3 modulates the G ₁ Cdk and acts as a timer in the Start network. Science Advances, 2022, 8, eabm4086.	4.7	1
2	Whi5 is diluted and protein synthesis does not dramatically increase in pre- <i>Start</i> G1. Molecular Biology of the Cell, 2022, 33, lt1.	0.9	13
3	Stress granules display bistable dynamics modulated by Cdk. Journal of Cell Biology, 2021, 220, .	2.3	14
4	Proteostatic stress as a nodal hallmark of replicative aging. Experimental Cell Research, 2020, 394, 112163.	1.2	8
5	Competition in the chaperone-client network subordinates cell-cycle entry to growth and stress. Life Science Alliance, 2019, 2, e201800277.	1.3	13
6	Proteostasis collapse, a hallmark of aging, hinders the chaperone-Start network and arrests cells in G1. ELife, 2019, 8, .	2.8	28
7	Coincidence Analysis of Molecular Dynamics by Raster Image Correlation Spectroscopy. Methods in Molecular Biology, 2019, 2040, 375-384.	0.4	3
8	Cdc48/p97 segregase is modulated by cyclinâ€dependent kinase to determine cyclin fate during G1 progression. EMBO Journal, 2018, 37, .	3.5	24
9	Centromeric signaling proteins boost G1 cyclin degradation and modulate cell size in budding yeast. PLoS Biology, 2018, 16, e2005388.	2.6	1
10	Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell. Current Biology, 2017, 27, 773-783.	1.8	54
11	Growth Rate as a Direct Regulator of the Start Network to Set Cell Size. Frontiers in Cell and Developmental Biology, 2017, 5, 57.	1.8	34
12	Nucleosome architecture throughout the cell cycle. Scientific Reports, 2016, 6, 19729.	1.6	29
13	Inntags: small self-structured epitopes for innocuous protein tagging. Nature Methods, 2015, 12, 955-958.	9.0	22
14	A Whi7-Anchored Loop Controls the G1 Cdk-Cyclin Complex at Start. Molecular Cell, 2014, 53, 115-126.	4.5	46
15	KIS, a Kinase Associated with Microtubule Regulators, Enhances Translation of AMPA Receptors and Stimulates Dendritic Spine Remodeling. Journal of Neuroscience, 2014, 34, 13988-13997.	1.7	24
16	Phosphate-Activated Cyclin-Dependent Kinase Stabilizes G ₁ Cyclin To Trigger Cell Cycle Entry. Molecular and Cellular Biology, 2013, 33, 1273-1284.	1.1	29
17	The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation. Nature Communications, 2012, 3, 1012.	5.8	170
18	Translokin (Cep57) Interacts with Cyclin D1 and Prevents Its Nuclear Accumulation in Quiescent Fibroblasts. Traffic, 2011, 12, 549-562.	1.3	13

#	Article	IF	CITATIONS
19	Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility. Oncogene, 2011, 30, 1936-1946.	2.6	25
20	The transcriptional network activated by Cln3 cyclin at the G1-to-S transition of the yeast cell cycle. Genome Biology, 2010, 11, R67.	13.9	66
21	Whi3 regulates morphogenesis in budding yeast by enhancing Cdk functions in apical growth. Cell Cycle, 2009, 8, 1912-1920.	1.3	11
22	Mixed Lineage Kinase Phosphorylates Transcription Factor E47 and Inhibits TrkB Expression to Link Neuronal Death and Survival Pathways. Journal of Biological Chemistry, 2009, 284, 32980-32988.	1.6	10
23	Bck2 is a phase-independent activator of cell cycle-regulated genes in yeast. Cell Cycle, 2009, 8, 239-252.	1.3	28
24	Protein Kinase KIS Localizes to RNA Granules and Enhances Local Translation. Molecular and Cellular Biology, 2009, 29, 726-735.	1.1	34
25	1,25-Dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis, 2009, 204, 85-89.	0.4	151
26	Whi3, a Developmental Regulator of Budding Yeast, Binds a Large Set of mRNAs Functionally Related to the Endoplasmic Reticulum. Journal of Biological Chemistry, 2008, 283, 28670-28679.	1.6	44
27	Control of Cell Cycle and Cell Growth by Molecular Chaperones. Cell Cycle, 2007, 6, 2599-2603.	1.3	19
28	Cyclin Cln3 Is Retained at the ER and Released by the J Chaperone Ydj1 in Late G1 to Trigger Cell Cycle Entry. Molecular Cell, 2007, 26, 649-662.	4.5	101
29	Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. EMBO Journal, 2006, 25, 2338-2346.	3.5	127
30	1,25-Dihydroxyvitamin D3 stimulates vascular smooth muscle cell proliferation through a VEGF-mediated pathway. Kidney International, 2006, 69, 1377-1384.	2.6	164
31	Basic Helix-Loop-Helix Proteins Bind to TrkB and p21 Cip1 Promoters Linking Differentiation and Cell Cycle Arrest in Neuroblastoma Cells. Molecular and Cellular Biology, 2004, 24, 2662-2672.	1.1	79
32	Recruitment of Cdc28 by Whi3 restricts nuclear accumulation of the G1 cyclin–Cdk complex to late G1. EMBO Journal, 2004, 23, 180-190.	3.5	72
33	TOR Regulates the Subcellular Localization of Ime1, a Transcriptional Activator of Meiotic Development in Budding Yeast. Molecular and Cellular Biology, 2003, 23, 7415-7424.	1.1	28
34	Biogenesis of Yeast Telomerase Depends on the Importin Mtr10. Molecular and Cellular Biology, 2002, 22, 6046-6055.	1.1	50
35	Osmotic stress causes a G1 cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae. Molecular Microbiology, 2001, 39, 1022-1035.	1.2	86
36	Whi3 binds the mRNA of the G ₁ cyclin <i>CLN3</i> to modulate cell fate in budding yeast. Genes and Development, 2001, 15, 2803-2808.	2.7	96

#	Article	IF	CITATIONS
37	The Yeast Ser/Thr Phosphatases Sit4 and Ppz1 Play Opposite Roles in Regulation of the Cell Cycle. Molecular and Cellular Biology, 1999, 19, 2408-2415.	1.1	78
38	G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO Journal, 1999, 18, 320-329.	3.5	84
39	Functional analysis of yeast essential genes using a promoter-substitution cassette and the tetracycline-regulatable dual expression system. Yeast, 1998, 14, 1127-1138.	0.8	140
40	An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast [published erratum appears in Nucleic Acids Res 1998 Apr 1;26(7):following 1855]. Nucleic Acids Research, 1998, 26, 942-947.	6.5	251
41	<i>Escherichia coli mrsC</i> Is an Allele of <i>hflB</i> , Encoding a Membrane-Associated ATPase and Protease That Is Required for mRNA Decay. Journal of Bacteriology, 1998, 180, 1929-1938.	1.0	29
42	The nucleotide sequence of Saccharomyces cerevisiae chromosome XV. Nature, 1997, 387, 98-102.	13.7	54
43	The Cln3 cyclin is down-regulated by translational repression and degradation during the G1 arrest caused by nitrogen deprivation in budding yeast. EMBO Journal, 1997, 16, 7196-7206.	3.5	160
44	p21WAF1/Cip1 expression is associated with cell differentiation but not with p53 mutations in squamous cell carcinomas of the larynx. , 1997, 183, 156-163.		44
45	TheAFT1 Transcriptional Factor is Differentially Required for Expression of High-Affinity Iron Uptake Genes inSaccharomyces cerevisiae. Yeast, 1997, 13, 621-637.	0.8	82
46	A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression inSaccharomyces cerevisiae. , 1997, 13, 837-848.		555
47	Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames. Yeast, 1996, 12, 709-714.	0.8	4
48	Sequence analysis of a 13·4 kbp fragment from the left arm of chromosome XV reveals a malate dehydrogenase gene, a putative Ser/Thr protein kinase, the ribosomal L25 gene and four new open reading frames. Yeast, 1996, 12, 1013-1020.	0.8	6
49	Sequence analysis of a 12 801 bp fragment of the left arm of yeast chromosome XV containing a putative 6-phosphofructo-2-kinase gene, a gene for a possible glycophospholipid-anchored surface protein and six other open reading frames. Yeast, 1996, 12, 1053-1058.	0.8	4
50	An efficient method to isolate yeast genes causing overexpression-mediated growth arrest. Yeast, 1995, 11, 25-32.	0.8	70
51	XV. Yeast sequencing reports. Sequence analysis of a 9873 bp fragment of the left arm of yeast chromosome XV that contains theARG8 andCDC33 genes, a putative riboflavin synthase beta chain gene, and four new open reading frames. Yeast, 1995, 11, 1061-1067.	0.8	6
52	XV. Yeast sequencing reports. DNA sequence analysis of a 13 kbp fragment of the left arm of yeast chromosome XV containing seven new open reading frames. Yeast, 1995, 11, 1281-1288.	0.8	14
53	The umpA gene of Escherichia coli encodes phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (lgt) and regulates thymidylate synthase levels through translational coupling. Journal of Bacteriology, 1995, 177, 1879-1882.	1.0	38
54	Gearbox gene expression and growth rate. World Journal of Microbiology and Biotechnology, 1993, 9, 414-420.	1.7	8

#	Article	IF	CITATIONS
55	A standardized format for handling data on plasmids, viruses and transposons: The PVT database format. World Journal of Microbiology and Biotechnology, 1992, 8, 519-526.	1.7	1
56	On the chronology and topography of bacterial cell division. Research in Microbiology, 1991, 142, 253-257.	1.0	12
57	Preferential cytoplasmic location of FtsZ, a protein essential for Escherichia coli septation. Molecular Microbiology, 1991, 5, 1681-1686.	1.2	82
58	The role of the â€~gearbox' in the transcription of essential genes. Molecular Microbiology, 1991, 5, 2085-2091.	1.2	89
59	New method for generating deletions and gene replacements in Escherichia coli. Journal of Bacteriology, 1989, 171, 4617-4622.	1.0	713
60	Segregation of elongation potential inEscherichia coli mediated by thewee genetic system. Current Microbiology, 1988, 17, 315-319.	1.0	3
61	CLONING: a microcomputer program for cloning simulations. Gene, 1988, 65, 111-116.	1.0	4
62	Transcript mapping using [35S]DNA probes, trichloroacetate solvent and dideoxy sequencing ladders: a rapid method for identification of transcriptional start points. Gene, 1988, 65, 101-110.	1.0	45
63	Generation of a detailed physical and genetic map of the ilv-metE-udp region of the Escherichia coli chromosome. Journal of Molecular Biology, 1988, 200, 427-438.	2.0	20
64	Instructions for the CLONING program. Gene, 1988, 65, 117-122.	1.0	2
65	Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. Journal of Bacteriology, 1988, 170, 5169-5176.	1.0	126
66	Structural inhibition and reactivation of Escherichia coli septation by elements of the SOS and TER pathways. Journal of Bacteriology, 1987, 169, 1772-1776.	1.0	13
67	Interaction of FtsA and PBP3 proteins in the Escherichia coli septum. Journal of Bacteriology, 1986, 166, 985-992.	1.0	94
68	Coupling between DNA replication and cell division mediated by the FtsA protein in Escherichia coli: a pathway independent of the SOS response, the "TER" pathway. Journal of Bacteriology, 1985, 164, 950-953.	1.0	27
69	Constancy of diameter through the cell cycle ofSalmonella typhimurium LT2. Current Microbiology, 1982, 7, 165-168.	1.0	7