
Nicholas J Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6562591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directed evolution drives the next generation of biocatalysts. Nature Chemical Biology, 2009, 5, 567-573.	3.9	689
2	Conversion of alcohols to enantiopure amines through dual-enzyme hydrogen-borrowing cascades. Science, 2015, 349, 1525-1529.	6.0	339
3	Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Topics in Catalysis, 2014, 57, 284-300.	1.3	330
4	Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 87-92.	3.3	326
5	Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis, 2017, 7, 710-724.	5.5	322
6	Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nature Chemistry, 2013, 5, 93-99.	6.6	314
7	Engineering an Enantioselective Amine Oxidase for the Synthesis of Pharmaceutical Building Blocks and Alkaloid Natural Products. Journal of the American Chemical Society, 2013, 135, 10863-10869.	6.6	311
8	Biocatalytic retrosynthesis. Nature Chemical Biology, 2013, 9, 285-288.	3.9	299
9	A reductive aminase from Aspergillus oryzae. Nature Chemistry, 2017, 9, 961-969.	6.6	290
10	Extending the application of biocatalysis to meet the challenges of drug development. Nature Reviews Chemistry, 2018, 2, 409-421.	13.8	290
11	Discovery, Engineering, and Synthetic Application of Transaminase Biocatalysts. ACS Catalysis, 2017, 7, 8263-8284.	5.5	261
12	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
13	Enantioselective Chemo―and Biocatalysis: Partners in Retrosynthesis. Angewandte Chemie - International Edition, 2017, 56, 8942-8973.	7.2	236
14	Cytochromes P450 as useful biocatalysts: addressing the limitations. Chemical Communications, 2011, 47, 2490.	2.2	221
15	Deracemization of <i>ïį½ïį½z;/i>-Methylbenzylamine Using an Enzyme Obtained by In Vitro Evolution. Angewandte Chemie - International Edition, 2002, 41, 3177-3180.</i>	7.2	219
16	A Chemo-Enzymatic Route to Enantiomerically Pure Cyclic Tertiary Amines. Journal of the American Chemical Society, 2006, 128, 2224-2225.	6.6	208
17	Enantioselective Oxidation of C–O and C–N Bonds Using Oxidases. Chemical Reviews, 2011, 111, 4073-4087.	23.0	204
18	Imine reductases (IREDs). Current Opinion in Chemical Biology, 2017, 37, 19-25.	2.8	202

#	Article	IF	CITATIONS
19	Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. Current Opinion in Chemical Biology, 2004, 8, 114-119.	2.8	201
20	Biocatalysis Using Immobilized Enzymes in Continuous Flow for the Synthesis of Fine Chemicals. Organic Process Research and Development, 2019, 23, 9-18.	1.3	201
21	Deracemisation methods. Current Opinion in Chemical Biology, 2010, 14, 115-121.	2.8	195
22	Rapid and ultra-sensitive determination of enzyme activities using surface-enhanced resonance Raman scattering. Nature Biotechnology, 2004, 22, 1133-1138.	9.4	192
23	Directed Evolution of an Amine Oxidase Possessing both Broad Substrate Specificity and High Enantioselectivity. Angewandte Chemie - International Edition, 2003, 42, 4807-4810.	7.2	178
24	One-Pot Cascade Synthesis of Mono- and Disubstituted Piperidines and Pyrrolidines using Carboxylic Acid Reductase (CAR), ω-Transaminase (ω-TA), and Imine Reductase (IRED) Biocatalysts. ACS Catalysis, 2016, 6, 3753-3759.	5.5	171
25	A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chemical Communications, 2010, 46, 7918.	2.2	170
26	Directed evolution of enzymes for applied biocatalysis. Trends in Biotechnology, 2003, 21, 474-478.	4.9	160
27	An automated Design-Build-Test-Learn pipeline for enhanced microbial production of fine chemicals. Communications Biology, 2018, 1, 66.	2.0	159
28	A Regio―and Stereoselective ωâ€Transaminase/Monoamine Oxidase Cascade for the Synthesis of Chiral 2,5â€Disubstituted Pyrrolidines. Angewandte Chemie - International Edition, 2014, 53, 2447-2450.	7.2	158
29	Rapid screening and scale-up of transaminase catalysed reactions. Organic and Biomolecular Chemistry, 2009, 7, 395-398.	1.5	154
30	Enantioselective Biocatalytic Oxidative Desymmetrization of Substituted Pyrrolidines. Angewandte Chemie - International Edition, 2010, 49, 2182-2184.	7.2	150
31	Chiral Amine Synthesis Using ωâ€Transaminases: An Amine Donor that Displaces Equilibria and Enables Highâ€Throughput Screening. Angewandte Chemie - International Edition, 2014, 53, 10714-10717.	7.2	149
32	Identification of a New Class of Cytochrome P450 from a Rhodococcus sp. Journal of Bacteriology, 2002, 184, 3898-3908.	1.0	146
33	Efficient Production of Enantiomerically Pure Chiral Amines at Concentrations of 50 g/L Using Transaminases. Organic Process Research and Development, 2010, 14, 234-237.	1.3	143
34	Directed Evolution of Galactose Oxidase: Generation of Enantioselective Secondary Alcohol Oxidases. ChemBioChem, 2008, 9, 857-860.	1.3	140
35	Ammonia lyases and aminomutases as biocatalysts for the synthesis of α-amino and β-amino acids. Current Opinion in Chemical Biology, 2011, 15, 234-240.	2.8	140
36	Asymmetric Reduction of Cyclic Imines Catalyzed by a Wholeâ€Cell Biocatalyst Containing an (<i>S</i>)â€Imine Reductase. ChemCatChem, 2013, 5, 3505-3508.	1.8	134

#	Article	IF	CITATIONS
37	Synthetic and Therapeutic Applications of Ammonia-lyases and Aminomutases. Chemical Reviews, 2018, 118, 73-118.	23.0	134
38	RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nature Catalysis, 2021, 4, 98-104.	16.1	131
39	An (<i>R</i>)â€Imine Reductase Biocatalyst for the Asymmetric Reduction of Cyclic Imines. ChemCatChem, 2015, 7, 579-583.	1.8	126
40	Enzyme cascade reactions: synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem. Green Chemistry, 2015, 17, 3271-3275.	4.6	124
41	Directed Evolution of an Amine Oxidase for the Preparative Deracemisation of Cyclic Secondary Amines. ChemBioChem, 2005, 6, 637-639.	1.3	121
42	A Versatile Chemo-Enzymatic Route to Enantiomerically Pure β-Branched α-Amino Acids. Journal of the American Chemical Society, 2004, 126, 4098-4099.	6.6	118
43	Structures of carboxylic acid reductase reveal domain dynamics underlying catalysis. Nature Chemical Biology, 2017, 13, 975-981.	3.9	118
44	Applications of transketolases in organic synthesis. Current Opinion in Biotechnology, 2000, 11, 527-531.	3.3	117
45	Amine–boranes: effective reducing agents for the deracemisation of dl-amino acids using l-amino acid oxidase from Proteus myxofaciens. Tetrahedron Letters, 2002, 43, 707-710.	0.7	117
46	InspIRED by Nature: NADPHâ€Đependent Imine Reductases (IREDs) as Catalysts for the Preparation of Chiral Amines. Chemistry - A European Journal, 2016, 22, 1900-1907.	1.7	116
47	Synthesis of homochiral I-(S)-tert-leucine via a lipase catalysed dynamic resolution process. Tetrahedron Letters, 1995, 36, 1113-1116.	0.7	113
48	Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase. Chemical Communications, 2009, , 2127.	2.2	113
49	Highly Stereoselective Synthesis of Substituted Prolyl Peptides Using a Combination of Biocatalytic Desymmetrization and Multicomponent Reactions. Angewandte Chemie - International Edition, 2010, 49, 5289-5292.	7.2	112
50	Absolute Quantification of Uric Acid in Human Urine Using Surface Enhanced Raman Scattering with the Standard Addition Method. Analytical Chemistry, 2017, 89, 2472-2477.	3.2	112
51	Biosynthesis and Characterization of Copper Nanoparticles Using <i>Shewanella oneidensis</i> : Application for Click Chemistry. Small, 2018, 14, 1703145.	5.2	112
52	Artificial concurrent catalytic processes involving enzymes. Chemical Communications, 2015, 51, 450-464.	2.2	106
53	Glycoprotein Labeling Using Engineered Variants of Galactose Oxidase Obtained by Directed Evolution. Journal of the American Chemical Society, 2011, 133, 8436-8439.	6.6	105
54	NAD(P)Hâ€Dependent Dehydrogenases for the Asymmetric Reductive Amination of Ketones: Structure, Mechanism, Evolution and Application. Advanced Synthesis and Catalysis, 2017, 359, 2011-2025.	2.1	103

#	Article	IF	CITATIONS
55	Synthesis of <scp>D</scp> ―and <scp>L</scp> â€Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process. Angewandte Chemie - International Edition, 2015, 54, 4608-4611.	7.2	100
56	Screening and characterization of a diverse panel of metagenomic imine reductases for biocatalytic reductive amination. Nature Chemistry, 2021, 13, 140-148.	6.6	100
57	Enzyme Toolbox: Novel Enantiocomplementary Imine Reductases. ChemBioChem, 2014, 15, 2201-2204.	1.3	98
58	Selective hydrolysis of nitriles under mild conditions by an enzyme Tetrahedron Letters, 1990, 31, 7223-7226.	0.7	96
59	Stereoselectivity and Structural Characterization of an Imine Reductase (IRED) from <i>Amycolatopsis orientalis</i> . ACS Catalysis, 2016, 6, 3880-3889.	5.5	96
60	A Self-sufficient Cytochrome P450 with a Primary Structural Organization That Includes a Flavin Domain and a [2Fe-2S] Redox Center. Journal of Biological Chemistry, 2003, 278, 48914-48920.	1.6	94
61	Engineered enzymes that retain and regenerate their cofactors enable continuous-flow biocatalysis. Nature Catalysis, 2019, 2, 1006-1015.	16.1	91
62	Biocatalytic <i>N</i> -Alkylation of Amines Using Either Primary Alcohols or Carboxylic Acids via Reductive Aminase Cascades. Journal of the American Chemical Society, 2019, 141, 1201-1206.	6.6	91
63	Structure and Activity of NADPHâ€Dependent Reductase Q1EQE0 from <i>Streptomyces kanamyceticus</i> , which Catalyses the <i>R</i> â€Selective Reduction of an Imine Substrate. ChemBioChem, 2013, 14, 1372-1379.	1.3	90
64	Direct Alkylation of Amines with Primary and Secondary Alcohols through Biocatalytic Hydrogen Borrowing. Angewandte Chemie - International Edition, 2017, 56, 10491-10494.	7.2	90
65	Deracemisation and stereoinversion of $\hat{I}\pm$ -amino acids using D-amino acid oxidase and hydride reducing agents. Chemical Communications, 2002, , 246-247.	2.2	88
66	Process Requirements of Galactose Oxidase Catalyzed Oxidation of Alcohols. Organic Process Research and Development, 2015, 19, 1580-1589.	1.3	88
67	A template-based mnemonic for monoamine oxidase (MAO-N) catalyzed reactions and its application to the chemo-enzymatic deracemisation of the alkaloid (±)-crispine A. Chemical Communications, 2007, , 3640.	2.2	87
68	Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl Nâ€Oxide Lewis Base Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10755-10759.	7.2	87
69	Asymmetric synthesis of synthetic alkaloids by a tandem biocatalysis/Ugi/Pictet–Spengler-type cyclization sequence. Chemical Communications, 2010, 46, 7706.	2.2	86
70	Identification of Novel Bacterial Members of the Imine Reductase Enzyme Family that Perform Reductive Amination. ChemCatChem, 2018, 10, 510-514.	1.8	86
71	Whole ell Biocatalysts for Stereoselective Câ^'H Amination Reactions. Angewandte Chemie - International Edition, 2016, 55, 1511-1513.	7.2	85
72	Transketolase from Escherichia coli: A practical procedure for using the biocatalyst for asymmetric carbon-carbon bond synthesis. Tetrahedron: Asymmetry, 1996, 7, 2185-2188.	1.8	83

#	Article	IF	CITATIONS
73	Engineering a Biometallic Whole Cell Catalyst for Enantioselective Deracemization Reactions. ACS Catalysis, 2011, 1, 1589-1594.	5.5	82
74	The continuous oxidation of HMF to FDCA and the immobilisation and stabilisation of periplasmic aldehyde oxidase (PaoABC). Green Chemistry, 2017, 19, 4660-4665.	4.6	79
75	Microwave-Assisted Sequential Amide Bond Formation and Intramolecular Amidation:  A Rapid Entry to Functionalized Oxindoles. Organic Letters, 2005, 7, 863-866.	2.4	78
76	Monoamine Oxidase (MAO-N) Catalyzed Deracemization of Tetrahydro-β-carbolines: Substrate Dependent Switch in Enantioselectivity. ACS Catalysis, 2013, 3, 2869-2872.	5.5	78
77	A Mechanism for Reductive Amination Catalyzed by Fungal Reductive Aminases. ACS Catalysis, 2018, 8, 11534-11541.	5.5	78
78	Enzyme-catalysed carbon–carbon bond formation: use of transketolase from Escherichia coli. Journal of the Chemical Society Perkin Transactions 1, 1993, , 165-166.	0.9	76
79	Directed evolution of enzymes: new biocatalysts for asymmetric synthesis. Organic and Biomolecular Chemistry, 2003, 1, 4133.	1.5	76
80	The Structure of Monoamine Oxidase from Aspergillus niger Provides a Molecular Context for Improvements in Activity Obtained by Directed Evolution. Journal of Molecular Biology, 2008, 384, 1218-1231.	2.0	76
81	Deracemization ofïį¼²iį¼²-Methylbenzylamine Using an Enzyme Obtained by In Vitro Evolution. Angewandte Chemie, 2002, 114, 3309-3312.	1.6	75
82	Enantioselektive Chemo―und Biokatalyse: Partner in der Retrosynthese. Angewandte Chemie, 2017, 129, 9068-9100.	1.6	75
83	Enzyme Cascades in Whole Cells for the Synthesis of Chiral Cyclic Amines. ACS Catalysis, 2017, 7, 2920-2925.	5.5	75
84	Selenzyme: enzyme selection tool for pathway design. Bioinformatics, 2018, 34, 2153-2154.	1.8	75
85	Monoamine Oxidase: Tunable Activity for Amine Resolution and Functionalization. ACS Catalysis, 2018, 8, 11889-11907.	5.5	75
86	Enzymatic Lateâ€6tage Modifications: Better Late Than Never. Angewandte Chemie - International Edition, 2021, 60, 16824-16855.	7.2	75
87	Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides. Angewandte Chemie - International Edition, 2017, 56, 14498-14501.	7.2	74
88	Simple and Versatile Laboratory Scale CSTR for Multiphasic Continuous-Flow Chemistry and Long Residence Times. Organic Process Research and Development, 2017, 21, 1294-1301.	1.3	74
89	Biocatalytic Desymmetrization of an Atropisomer with both an Enantioselective Oxidase and Ketoreductases. Angewandte Chemie - International Edition, 2010, 49, 7010-7013.	7.2	73
90	Deracemization By Simultaneous Bioâ€oxidative Kinetic Resolution and Stereoinversion. Angewandte Chemie - International Edition, 2014, 53, 3731-3734.	7.2	73

#	Article	IF	CITATIONS
91	Controlling chirality. Current Opinion in Biotechnology, 2003, 14, 401-406.	3.3	72
92	Biocatalytic transamination with near-stoichiometric inexpensive amine donors mediated by bifunctional mono- and di-amine transaminases. Green Chemistry, 2017, 19, 361-366.	4.6	69
93	A generic platform for the immobilisation of engineered biocatalysts. Tetrahedron, 2019, 75, 327-334.	1.0	69
94	Regioselective hydrolysis of aromatic dinitriles using a whole cell catalyst. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1679.	0.9	68
95	Stereoselective hydrolysis of nitriles and amides under mild conditions using a whole cell catalyst. Tetrahedron: Asymmetry, 1993, 4, 1085-1104.	1.8	67
96	Chemoenzymatic Synthesis of Optically Purel- andd-Biarylalanines through Biocatalytic Asymmetric Amination and Palladium-Catalyzed Arylation. ACS Catalysis, 2015, 5, 5410-5413.	5.5	67
97	Dynamic kinetic resolution: synthesis of optically active α-amino acid derivatives. Tetrahedron: Asymmetry, 2000, 11, 1687-1690.	1.8	66
98	Role of laccase as an enzymatic pretreatment method to improve lignocellulosic saccharification. Catalysis Science and Technology, 2014, 4, 2251-2259.	2.1	65
99	Catalytic bio–chemo and bio–bio tandem oxidation reactions for amide and carboxylic acid synthesis. Green Chemistry, 2014, 16, 4524-4529.	4.6	65
100	Combined Imine Reductase and Amine Oxidase Catalyzed Deracemization of Nitrogen Heterocycles. ChemCatChem, 2016, 8, 117-120.	1.8	65
101	Development of an <i>R</i> elective Amine Oxidase with Broad Substrate Specificity and High Enantioselectivity. ChemCatChem, 2014, 6, 996-1002.	1.8	64
102	Unveiling the Biocatalytic Aromatizing Activity of Monoamine Oxidases MAO-N and 6-HDNO: Development of Chemoenzymatic Cascades for the Synthesis of Pyrroles. ACS Catalysis, 2017, 7, 1295-1300.	5.5	64
103	Twoâ€Enzyme Hydrogenâ€Borrowing Amination of Alcohols Enabled by a Cofactorâ€&witched Alcohol Dehydrogenase. ChemCatChem, 2017, 9, 3833-3836.	1.8	64
104	The Bacterial Ammonia Lyase EncP: A Tunable Biocatalyst for the Synthesis of Unnatural Amino Acids. Journal of the American Chemical Society, 2015, 137, 12977-12983.	6.6	63
105	Biocatalytic Routes to Enantiomerically Enriched Dibenz[<i>c</i> , <i>e</i>]azepines. Angewandte Chemie - International Edition, 2017, 56, 15589-15593.	7.2	62
106	A surface plasmon resonance-based assay for small molecule inhibitors of human cyclophilin A. Analytical Biochemistry, 2005, 345, 214-226.	1.1	61
107	Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis. Bioorganic and Medicinal Chemistry, 2008, 16, 5050-5061.	1.4	61
108	Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angewandte Chemie - International Edition, 2019, 58, 4948-4952.	7.2	60

#	Article	IF	CITATIONS
109	Directed Evolution of the Enzyme Monoamine Oxidase (MAOâ€N): Highly Efficient Chemoâ€enzymatic Deracemisation of the Alkaloid (±)â€Crispineâ€A. ChemCatChem, 2012, 4, 1259-1261.	1.8	58
110	Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chemical Communications, 2009, , 2478.	2.2	56
111	Structure, Activity and Stereoselectivity of NADPHâ€Dependent Oxidoreductases Catalysing the <i>S</i> â€Selective Reduction of the Imine Substrate 2â€Methylpyrroline. ChemBioChem, 2015, 16, 1052-1059.	1.3	56
112	Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering. Nature Communications, 2021, 12, 4946.	5.8	56
113	Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen. Angewandte Chemie - International Edition, 2018, 57, 10535-10539.	7.2	55
114	Enantioselective Synthesis of Chiral Vicinal Amino Alcohols Using Amine Dehydrogenases. ACS Catalysis, 2019, 9, 11813-11818.	5.5	54
115	LICRED: A Versatile Dropâ€In Vector for Rapid Generation of Redoxâ€Selfâ€Sufficient Cytochrome P450s. ChemBioChem, 2010, 11, 987-994.	1.3	53
116	Nitrile hydratase enzymes in organic synthesis: Enantioselective synthesis of the lactone moiety of the mevinic acids. Tetrahedron Letters, 1996, 37, 6001-6004.	0.7	52
117	The biosynthesis of carbocyclic nucleosides. Chemical Society Reviews, 1995, 24, 169.	18.7	51
118	Analysis of the domain properties of the novel cytochrome P450 RhF. FEBS Letters, 2005, 579, 2215-2220.	1.3	51
119	Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes. Organic and Biomolecular Chemistry, 2015, 13, 223-233.	1.5	51
120	Singleâ€Biocatalyst Synthesis of Enantiopure <scp>d</scp> â€Arylalanines Exploiting an Engineered <scp>d</scp> â€Amino Acid Dehydrogenase. Advanced Synthesis and Catalysis, 2016, 358, 3298-3306.	2.1	51
121	Biocatalytic retrosynthesis: Redesigning synthetic routes to high-value chemicals. Perspectives in Science, 2016, 9, 42-48.	0.6	51
122	Oneâ€Pot Synthesis of Chiral <i>N</i> â€Arylamines by Combining Biocatalytic Aminations with Buchwald–Hartwig <i>N</i> â€Arylation. Angewandte Chemie - International Edition, 2020, 59, 18156-18160.	7.2	51
123	An Engineered Alcohol Oxidase for the Oxidation of Primary Alcohols. ChemBioChem, 2019, 20, 276-281.	1.3	50
124	Regio―and Enantioâ€selective Chemoâ€enzymatic Câ^'H‣actonization of Decanoic Acid to (<i>S</i>)â€Î´â€Decalactone. Angewandte Chemie - International Edition, 2019, 58, 5668-5671.	7.2	50
125	Phenylalanine Ammonia Lyase Catalyzed Synthesis of Amino Acids by an MIO ofactor Independent Pathway. Angewandte Chemie - International Edition, 2014, 53, 4652-4656.	7.2	49
126	Galactose Oxidase Variants for the Oxidation of Amino Alcohols in Enzyme Cascade Synthesis. ChemCatChem, 2015, 7, 2313-2317.	1.8	49

#	Article	IF	CITATIONS
127	Asymmetric synthesis of primary amines catalyzed by thermotolerant fungal reductive aminases. Chemical Science, 2020, 11, 5052-5057.	3.7	49
128	Cephalosporin biosynthesis: A branched pathway sensitive to an isotope effect. Tetrahedron, 1991, 47, 9881-9900.	1.0	48
129	Real-Time Screening of Biocatalysts in Live Bacterial Colonies. Journal of the American Chemical Society, 2017, 139, 1408-1411.	6.6	48
130	Chemoenzymatic Synthesis of Substituted Azepanes by Sequential Biocatalytic Reduction and Organolithium-Mediated Rearrangement. Journal of the American Chemical Society, 2018, 140, 17872-17877.	6.6	48
131	Rapid prototyping of microbial production strains for the biomanufacture of potential materials monomers. Metabolic Engineering, 2020, 60, 168-182.	3.6	48
132	Characterization of imine reductases in reductive amination for the exploration of structure-activity relationships. Science Advances, 2020, 6, eaay9320.	4.7	48
133	Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature, 2022, 604, 86-91.	13.7	48
134	An Asymmetric Enzyme-Catalyzed Retro-Claisen Reaction for the Desymmetrization of Cyclicl ² -Diketones. Angewandte Chemie - International Edition, 2001, 40, 1111-1114.	7.2	47
135	Solid-Supported Cyclohexane-1,3-dione (CHD):  A "Capture and Release―Reagent for the Synthesis of Amides and Novel Scavenger Resin. Organic Letters, 2003, 5, 849-852.	2.4	47
136	Enantioselective hydrolysis of nitriles and amides using an immobilised whole cell system. Tetrahedron: Asymmetry, 1992, 3, 1543-1546.	1.8	45
137	Coupling Droplet Microfluidics with Mass Spectrometry for Ultrahigh-Throughput Analysis of Complex Mixtures up to and above 30 Hz. Analytical Chemistry, 2020, 92, 12605-12612.	3.2	45
138	Engineering Escherichia coli towards de novo production of gatekeeper (2S)-flavanones: naringenin, pinocembrin, eriodictyol and homoeriodictyol. Synthetic Biology, 2020, 5, ysaa012.	1.2	45
139	Purification and characterization of cloned isopenicillin N synthetase Journal of Antibiotics, 1987, 40, 652-659.	1.0	44
140	Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades**. Angewandte Chemie - International Edition, 2021, 60, 18660-18665.	7.2	44
141	Enzymatic Generation and In Situ Screening of a Dynamic Combinatorial Library of Sialic Acid Analogues. Angewandte Chemie - International Edition, 2002, 41, 3405-3407.	7.2	43
142	Micro-scale process development of transaminase catalysed reactions. Organic and Biomolecular Chemistry, 2010, 8, 1280.	1.5	43
143	One-Pot Biocatalytic Synthesis of Substituted <scp>d</scp> -Tryptophans from Indoles Enabled by an Engineered Aminotransferase. ACS Catalysis, 2019, 9, 3482-3486.	5.5	43
144	One-Pot Biocatalytic Cascade Reduction of Cyclic Enimines for the Preparation of Diastereomerically Enriched <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2019, 141, 19208-19213.	6.6	43

#	Article	IF	CITATIONS
145	A fast and sensitive assay for measuring the activity and enantioselectivity of transaminases. Chemical Communications, 2011, 47, 773-775.	2.2	42
146	Monoamine Oxidase–ωâ€Transaminase Cascade for the Deracemisation and Dealkylation of Amines. ChemCatChem, 2014, 6, 992-995.	1.8	42
147	Achieving optimal SERS through enhanced experimental design. Journal of Raman Spectroscopy, 2016, 47, 59-66.	1.2	42
148	Kinetic Resolution and Deracemization of Racemic Amines Using a Reductive Aminase. ChemCatChem, 2018, 10, 515-519.	1.8	42
149	Chemoâ€Enzymatic Synthesis of Pyrazines and Pyrroles. Angewandte Chemie - International Edition, 2018, 57, 16760-16763.	7.2	42
150	Substrate promiscuity of cytochrome P450 RhF. Catalysis Science and Technology, 2013, 3, 1490.	2.1	41
151	Technical Considerations for Scale-Up of Imine-Reductase-Catalyzed Reductive Amination: A Case Study. Organic Process Research and Development, 2019, 23, 1262-1268.	1.3	41
152	Stereoinversion of β- and γ-substituted α-amino acids using a chemo-enzymatic oxidation–reduction procedure. Chemical Communications, 2003, , 2636-2637.	2.2	40
153	Biocatalysis enters a new era. Current Opinion in Chemical Biology, 2013, 17, 212-214.	2.8	40
154	Bacterial Anabaena variabilis phenylalanine ammonia lyase: A biocatalyst with broad substrate specificity. Bioorganic and Medicinal Chemistry, 2014, 22, 5555-5557.	1.4	40
155	Asymmetric Synthesis of <i>N</i> ‣ubstituted αâ€Amino Esters from αâ€Ketoesters via Imine Reductaseâ€Catalyzed Reductive Amination. Angewandte Chemie - International Edition, 2021, 60, 8717-8721.	7.2	40
156	Recent advances in the use of enzyme-catalysed reactions in organic synthesis. Natural Product Reports, 1989, 6, 625.	5.2	38
157	Enzymic hydrolysis of prochiral dinitriles. Tetrahedron: Asymmetry, 1992, 3, 1547-1550.	1.8	38
158	The Desymmetrization of Bicyclic \hat{l}^2 -Diketones by an Enzymatic Retro-Claisen Reaction. Journal of Biological Chemistry, 2001, 276, 12565-12572.	1.6	38
159	Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from Actinomycetes. Organic and Biomolecular Chemistry, 2005, 3, 2930.	1.5	38
160	Enzymatic Desymmetrising Redox Reactions for the Asymmetric Synthesis of Biaryl Atropisomers. Chemistry - A European Journal, 2014, 20, 13084-13088.	1.7	38
161	A Single Enzyme Oxidative "Cascade―via a Dual-Functional Galactose Oxidase. ACS Catalysis, 2018, 8, 4025-4032.	5.5	38
162	Synergistic Chemo/Biocatalytic Synthesis of Alkaloidal Tetrahydroquinolines. ACS Catalysis, 2018, 8, 5570-5573.	5.5	38

#	Article	IF	CITATIONS
163	Carboxylic acid reductases (CARs): An industrial perspective. Journal of Biotechnology, 2019, 304, 78-88.	1.9	38
164	Consolidated production of coniferol and other high-value aromatic alcohols directly from lignocellulosic biomass. Green Chemistry, 2020, 22, 144-152.	4.6	38
165	Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens. Nature Communications, 2022, 13, 371.	5.8	38
166	A novel linker for the attachment of alcohols to solid supports. Tetrahedron Letters, 1998, 39, 3819-3822.	0.7	37
167	Synthesis of a novel N-hydroxypyrrolidine using enzyme catalysed asymmetric carbon–carbon bond synthesis. Tetrahedron Letters, 2000, 41, 4481-4485.	0.7	37
168	Mapping the substrate scope of monoamine oxidase (MAO-N) as a synthetic tool for the enantioselective synthesis of chiral amines. Bioorganic and Medicinal Chemistry, 2018, 26, 1338-1346.	1.4	37
169	Panel of New Thermostable CYP116B Selfâ€Sufficient Cytochromeâ€P450 Monooxygenases that Catalyze Câ^'H Activation with a Diverse Substrate Scope. ChemCatChem, 2018, 10, 1042-1051.	1.8	37
170	Identification of broad specificity P450CAM variants by primary screening against indole as substrate. Chemical Communications, 2005, , 3652.	2.2	36
171	Label-Free Surface Enhanced Raman Scattering Approach for High-Throughput Screening of Biocatalysts. Analytical Chemistry, 2016, 88, 5898-5903.	3.2	36
172	A biocatalytic cascade for the conversion of fatty acids to fatty amines. Green Chemistry, 2019, 21, 4932-4935.	4.6	36
173	Biocatalytic Oxidation in Continuous Flow for the Generation of Carbohydrate Dialdehydes. ACS Catalysis, 2019, 9, 11658-11662.	5.5	36
174	Tuning Lipase Enantioselectivity in Organic Media Using Solid-State Buffers. Journal of Organic Chemistry, 2001, 66, 5074-5079.	1.7	35
175	Generation of a dynamic combinatorial library using sialic acid aldolase and in situ screening against wheat germ agglutinin. Tetrahedron, 2004, 60, 771-780.	1.0	35
176	Preparative deracemization of unnatural amino acids. Biochemical Society Transactions, 2006, 34, 287.	1.6	35
177	Putrescine Transaminases for the Synthesis of Saturated Nitrogen Heterocycles from Polyamines. ChemCatChem, 2016, 8, 1038-1042.	1.8	35
178	Enzyme-catalysed inter-esterification procedure for the preparation of esters of a chiral secondary alcohol in high enantiomeric purity. Journal of the Chemical Society Chemical Communications, 1990, , 569.	2.0	34
179	Recent advances in the use of enzyme-catalysed reactions in organic synthesis. Natural Product Reports, 1994, 11, 1.	5.2	34
180	Efficient Palladium-Catalyzed Cross-Coupling of β-Chloroalkylidene/arylidene Malonates Using Microwave Chemistry. Journal of Organic Chemistry, 2004, 69, 6920-6922.	1.7	34

#	Article	IF	CITATIONS
181	Chimeric self-sufficient P450cam-RhFRed biocatalysts with broad substrate scope. Beilstein Journal of Organic Chemistry, 2011, 7, 1494-1498.	1.3	34
182	Enzymatic cascades for the regio- and stereoselective synthesis of chiral amines. Perspectives in Science, 2015, 4, 55-61.	0.6	34
183	Immobilised whole-cell recombinant monoamine oxidase biocatalysis. Applied Microbiology and Biotechnology, 2015, 99, 1229-1236.	1.7	34
184	High Throughput Screens Yield Small Molecule Inhibitors of Leishmania CRK3:CYC6 Cyclin-Dependent Kinase. PLoS Neglected Tropical Diseases, 2011, 5, e1033.	1.3	33
185	A biocatalytic cascade for the amination of unfunctionalised cycloalkanes. Organic and Biomolecular Chemistry, 2017, 15, 9790-9793.	1.5	33
186	Improved Descriptors for the Quantitative Structure–Activity Relationship Modeling of Peptides and Proteins. Journal of Chemical Information and Modeling, 2018, 58, 234-243.	2.5	33
187	Bio-derived production of cinnamyl alcohol <i>via</i> a three step biocatalytic cascade and metabolic engineering. Green Chemistry, 2018, 20, 658-663.	4.6	33
188	Biocatalytic Monoacylation of Symmetrical Diamines and Its Application to the Synthesis of Pharmaceutically Relevant Amides. ACS Catalysis, 2020, 10, 10005-10009.	5.5	33
189	Reductive aminations by imine reductases: from milligrams to tons. Chemical Science, 2022, 13, 4697-4713.	3.7	33
190	Some recent developments in the use of enzyme catalysed reactions in organic synthesis. Journal of Biotechnology, 1992, 22, 227-244.	1.9	32
191	Biocatalytic Dynamic Kinetic Resolution for the Synthesis of Atropisomeric Biaryl Nâ€Oxide Lewis Base Catalysts. Angewandte Chemie, 2016, 128, 10913-10917.	1.6	32
192	Engineered Ammonia Lyases for the Production of Challenging Electron-Rich <scp>l</scp> -Phenylalanines. ACS Catalysis, 2018, 8, 3129-3132.	5.5	32
193	Biocatalytic Conversion of Cyclic Ketones Bearing αâ€Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium‧ized Carbocycles. Angewandte Chemie - International Edition, 2018, 57, 3692-3696.	7.2	32
194	Revised pathway for the biosynthesis of aristeromycin and neplanocin A from D-glucose in Streptomyces citricolor. Journal of the American Chemical Society, 1995, 117, 5391-5392.	6.6	31
195	Probing the substrate specificity of the catalytically self-sufficient cytochrome P450 RhF from a Rhodococcus sp Chemical Communications, 2006, , 4492-4494.	2.2	31
196	Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase fromAspergillus niger. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 182-185.	0.7	31
197	Stereoselective synthesis of N-aryl proline amides by biotransformation–Ugi-Smiles sequence. Organic and Biomolecular Chemistry, 2012, 10, 941-944.	1.5	31
198	Engineering of phenylalanine ammonia lyase from Rhodotorula graminis for the enhanced synthesis of unnatural l-amino acids. Tetrahedron, 2016, 72, 7343-7347.	1.0	31

#	Article	IF	CITATIONS
199	Concurrent Biocatalytic Oxidation and C–C Bond Formation via Gold Catalysis: One-Pot Alkynylation of <i>N</i> -Alkyl Tetrahydroisoquinolines. ACS Catalysis, 2018, 8, 10032-10035.	5.5	31
200	Synthesis of 2,5â€Disubstituted Pyrrolidine Alkaloids <i>via</i> A Oneâ€Pot Cascade Using Transaminase and Reductive Aminase Biocatalysts. ChemCatChem, 2018, 10, 4733-4738.	1.8	31
201	Synthesis of enantiomerically pure α-hydroxyaldehydes from the corresponding α-hydroxycarboxylic acids: novel substrates for Escherichia coli transketolase. Journal of the Chemical Society Chemical Communications, 1995, , 2475-2476.	2.0	30
202	Enantioselective oxidation of O-methyl-N-hydroxylamines using monoamine oxidase N as catalyst. Chemical Communications, 2007, , 1530.	2.2	30
203	Heavily fluorinated carbohydrates as enzyme substrates: oxidation of tetrafluorinated galactose by galactose oxidase. Chemical Communications, 2011, 47, 11228.	2.2	30
204	Oneâ€Pot Biocatalytic Double Oxidation of αâ€Isophorone for the Synthesis of Ketoisophorone. ChemCatChem, 2017, 9, 3338-3348.	1.8	30
205	Zymophore identification enables the discovery of novel phenylalanine ammonia lyase enzymes. Scientific Reports, 2017, 7, 13691.	1.6	30
206	Editorial overview: Biocatalysis and biotransformation: The golden age of biocatalysis. Current Opinion in Chemical Biology, 2018, 43, A1-A3.	2.8	30
207	Enantioselective Benzylic Hydroxylation Catalysed by P450 Monooxygenases: Characterisation of a P450cam Mutant Library and Molecular Modelling. ChemBioChem, 2016, 17, 426-432.	1.3	29
208	The selfâ€sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5â€hydroxylation of diclofenac. Biotechnology Journal, 2017, 12, 1600520.	1.8	29
209	Engineered formate dehydrogenase from Chaetomium thermophilum, a promising enzymatic solution for biotechnical CO2 fixation. Biotechnology Letters, 2020, 42, 2251-2262.	1.1	29
210	Expanding the synthetic scope of biocatalysis by enzyme discovery and protein engineering. Tetrahedron, 2021, 82, 131926.	1.0	29
211	Carbon-Carbon Bond Synthesis: The Impact of rDNA Technology on the Production and Use of E. coli Transketolase. Annals of the New York Academy of Sciences, 1996, 782, 513-525.	1.8	28
212	Biotechnological Manufacturing Options for Organic Chemistry. Mini-Reviews in Organic Chemistry, 2009, 6, 300-306.	0.6	28
213	Structural Basis of the Substrate Range and Enantioselectivity of Two (<i>S</i>)-Selective ï‰-Transaminases. Biochemistry, 2016, 55, 4422-4431.	1.2	28
214	Comparison of a Batch and Flow Approach for the Lipase-Catalyzed Resolution of a Cyclopropanecarboxylate Ester, A Key Building Block for the Synthesis of Ticagrelor. Organic Process Research and Development, 2017, 21, 195-199.	1.3	28
215	N-(2-carboxybenzoyl)-L-phenylalanylglycine: a low molecular-mass gelling agent. Journal of the Chemical Society Chemical Communications, 1995, , 2063.	2.0	27
216	Enantioselective epoxidation of linolenic acid catalysed by cytochrome P450BM3 from Bacillus megaterium. Organic and Biomolecular Chemistry, 2005, 3, 2688.	1.5	27

#	Article	IF	CITATIONS
217	Intensified biocatalytic production of enantiomerically pure halophenylalanines from acrylic acids using ammonium carbamate as the ammonia source. Catalysis Science and Technology, 2016, 6, 4086-4089.	2.1	27
218	Direct Alkylation of Amines with Primary and Secondary Alcohols through Biocatalytic Hydrogen Borrowing. Angewandte Chemie, 2017, 129, 10627-10630.	1.6	27
219	Rapid Determination of Both the Activity and Enantioselectivity of Ketoreductases. Angewandte Chemie - International Edition, 2008, 47, 2639-2641.	7.2	26
220	Deracemisation of benzylisoquinoline alkaloids employing monoamine oxidase variants. Catalysis Science and Technology, 2014, 4, 3657-3664.	2.1	26
221	Monoamine Oxidase (MAO-N) Whole Cell Biocatalyzed Aromatization of 1,2,5,6-Tetrahydropyridines into Pyridines. ACS Catalysis, 2018, 8, 8781-8787.	5.5	26
222	Tyrosyl Radical Formation and Propagation in Flavin Dependent Monoamine Oxidases. ChemBioChem, 2010, 11, 1228-1231.	1.3	25
223	Asymmetric Synthesis of Tetracyclic Pyrroloindolines and Constrained Tryptamines by a Switchable Cascade Reaction. Angewandte Chemie - International Edition, 2015, 54, 14133-14136.	7.2	25
224	Adenylation Activity of Carboxylic Acid Reductases Enables the Synthesis of Amides. Angewandte Chemie, 2017, 129, 14690-14693.	1.6	25
225	Imine Reductases, Reductive Aminases, and Amine Oxidases for the Synthesis of Chiral Amines: Discovery, Characterization, and Synthetic Applications. Methods in Enzymology, 2018, 608, 131-149.	0.4	25
226	Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization. ACS Catalysis, 2020, 10, 6414-6421.	5.5	25
227	The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Natural Product Reports, 2022, 39, 335-388.	5.2	25
228	Lipase-Catalyzed Kinetic Resolution on Solid-Phase via a "Capture and Release―Strategy. Journal of the American Chemical Society, 2003, 125, 13952-13953.	6.6	24
229	An Engineered Cytidine Deaminase for Biocatalytic Production of a Key Intermediate of the Covid-19 Antiviral Molnupiravir. Journal of the American Chemical Society, 2022, 144, 3761-3765.	6.6	24
230	Stereospecific attachment of carbohydrates to amino acid derivatives using β-glucosidase and β-xylosidase. Journal of the Chemical Society Chemical Communications, 1991, , 1349-1350.	2.0	23
231	Concerning the Baker's Yeast (Saccharomyces cerevisiae) Mediated Reduction of Nitroarenes and Other N-O Containing Functional Groups. Tetrahedron Letters, 1997, 38, 3043-3046.	0.7	23
232	Structure-based discovery of a family of synthetic cyclophilin inhibitors showing a cyclosporin-A phenotype in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2007, 363, 1013-1019.	1.0	23
233	Synthesis of <scp>D</scp> ―and <scp>L</scp> â€Phenylalanine Derivatives by Phenylalanine Ammonia Lyases: A Multienzymatic Cascade Process. Angewandte Chemie, 2015, 127, 4691-4694.	1.6	23
234	Engineered Aminotransferase for the Production of <scp>d</scp> â€Phenylalanine Derivatives Using Biocatalytic Cascades. ChemCatChem, 2018, 10, 470-474.	1.8	23

#	Article	IF	CITATIONS
235	P450 camr , a cytochrome P450 catalysing the stereospecific 6- endo -hydroxylation of (1 R) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 T
236	Development of a high-throughput screening method for racemase activity and its application to the identification of alanine racemase variants with activity towards l-arginine. Tetrahedron, 2012, 68, 7564-7567.	1.0	22
237	Regioselective reduction of substituted dinitroarenes using baker's yeast. Tetrahedron Letters, 1994, 35, 7867-7870.	0.7	21
238	Biocatalytic approaches to a key building block for the anti-thrombotic agent ticagrelor. Organic and Biomolecular Chemistry, 2016, 14, 8064-8067.	1.5	21
239	Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling. ChemCatChem, 2019, 11, 5662-5670.	1.8	21
240	Synthesis of morphine-6-glucuronide via a highly selective enzyme catalysed hydrolysis reaction. Tetrahedron Letters, 1995, 36, 1117-1120.	0.7	20
241	Biohydroxylations of Cbz-protected alkyl substituted piperidines by Beauveria bassiana ATCC 7159. Journal of the Chemical Society Perkin Transactions 1, 1998, , 3365-3370.	0.9	20
242	Biocatalytic retrosynthesis approaches to <scp>d</scp> -(2,4,5-trifluorophenyl)alanine, key precursor of the antidiabetic sitagliptin. Green Chemistry, 2019, 21, 4368-4379.	4.6	20
243	Is it time for biocatalysis in fragment-based drug discovery?. Chemical Science, 2020, 11, 11104-11112.	3.7	20
244	Chemo-enzymatic synthesis of a β-mannosyl-containing trisaccharide. Journal of the Chemical Society Chemical Communications, 1991, , 382-384.	2.0	19
245	Synthesis of δα-aminoadipoyl–cysteinyl–allylglycine, and eight deuterated analogues, substrates for the investigation of the mechanism of action of isopenicillin n synthase Tetrahedron, 1991, 47, 8203-8222.	1.0	19
246	OUP accepted manuscript. Protein Engineering, Design and Selection, 2017, 30, 47-55.	1.0	19
247	Penicillin biosynthesis: multiple pathways from a modified substrate. Journal of the Chemical Society Chemical Communications, 1984, , 1211.	2.0	18
248	Synthesis of optically active methadones, LAAM and bufuralol by lipase-catalysed acylations. Tetrahedron: Asymmetry, 2003, 14, 567-576.	1.8	18
249	Synthesis of Enantiomerically Pure Ring-Substituted <scp>l</scp> -Pyridylalanines by Biocatalytic Hydroamination. Organic Letters, 2016, 18, 5468-5471.	2.4	18
250	Ganzzellenâ€Biokatalysator für stereoselektive Câ€Hâ€Aminierungen. Angewandte Chemie, 2016, 128, 1533-1	58 6 .	18
251	Telescopic one-pot condensation-hydroamination strategy for the synthesis of optically pure L-phenylalanines from benzaldehydes. Tetrahedron, 2016, 72, 7256-7262.	1.0	18
252	Synthesis of Pharmaceutically Relevant 2â€Aminotetralin and 3â€Aminochroman Derivatives via Enzymatic Reductive Amination. Angewandte Chemie - International Edition, 2021, 60, 24456-24460.	7.2	18

#	Article	IF	CITATIONS
253	Some Interesterification Reactions Involving <i>Mucor Miehei</i> Lipase. Biocatalysis, 1991, 5, 13-19.	0.9	17
254	A versatile procedure for the generation of nucleoside 5′-carboxylic acids using nucleoside oxidase. Tetrahedron, 1998, 54, 8171-8182.	1.0	17
255	Enzyme-Catalyzed Enantioselective Hydrolysis of Dihydrouracils as a Route to Enantiomerically Pure β-Amino Acids. ACS Catalysis, 2011, 1, 1014-1016.	5.5	17
256	Stereoselective Monoamine Oxidaseâ€Catalyzed Oxidative Azaâ€Friedel–Crafts Reactions of <i>meso</i> â€Pyrrolidines in Aqueous Buffer. Advanced Synthesis and Catalysis, 2016, 358, 1555-1560.	2.1	17
257	Case Studies Illustrating a Science and Risk-Based Approach to Ensuring Drug Quality When Using Enzymes in the Manufacture of Active Pharmaceuticals Ingredients for Oral Dosage Form. Organic Process Research and Development, 2016, 20, 594-601.	1.3	17
258	Synthesis of copper catalysts for click chemistry from distillery wastewater using magnetically recoverable bionanoparticles. Green Chemistry, 2019, 21, 4020-4024.	4.6	17
259	Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores. Green Chemistry, 2019, 21, 4958-4963.	4.6	17
260	Exploiting Bidirectional Electrocatalysis by a Nanoconfined Enzyme Cascade to Drive and Control Enantioselective Reactions. ACS Catalysis, 2021, 11, 6526-6533.	5.5	17
261	New Trends and Future Opportunities in the Enzymatic Formation of Câ^'C, Câ^'N, and Câ^'O bonds. ChemBioChem, 2022, 23, .	1.3	17
262	The isolation and absolute configuration of (1S,2S,3R)-4- Hydroxymethylcyclopent-4-ene-1,2,3-triol: A putative intermediate in the biosynthesis of aristeromycin by Streptomyces citricolor. Tetrahedron Letters, 1993, 34, 4083-4086.	0.7	16
263	An improved strategy for the stereoselective synthesis of glycosides using glycosidases as catalysts. Tetrahedron: Asymmetry, 1994, 5, 2517-2522.	1.8	16
264	Biocatalysis - A Gateway to Industrial Biotechnology. Advanced Synthesis and Catalysis, 2011, 353, 2189-2190.	2.1	16
265	Selective Oxidation of <i>N</i> -Glycolylneuraminic Acid Using an Engineered Galactose Oxidase Variant. ACS Catalysis, 2019, 9, 8208-8212.	5.5	16
266	Rapid Model-Based Optimization of a Two-Enzyme System for Continuous Reductive Amination in Flow. Organic Process Research and Development, 2020, 24, 1969-1977.	1.3	16
267	Enzyme immobilisation on wood-derived cellulose scaffolds <i>via</i> carbohydrate-binding module fusion constructs. Green Chemistry, 2021, 23, 4716-4732.	4.6	16
268	Natural heterogeneous catalysis with immobilised oxidase biocatalysts. RSC Advances, 2020, 10, 19501-19505.	1.7	16
269	Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
270	Penicillin biosynthesis: the origin of hydroxy groups in β-lactams derived from unsaturated substrates. Journal of the Chemical Society Chemical Communications, 1986, , 1305-1308.	2.0	15

#	Article	IF	CITATIONS
271	Synthesis of shidasterone and the unambiguous determination of its configuration at C-22. Journal of the Chemical Society Chemical Communications, 1995, , 933.	2.0	15
272	Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions. Beilstein Journal of Organic Chemistry, 2015, 11, 1713-1720.	1.3	15
273	Kinetic Resolution of Aromatic βâ€Amino Acids Using a Combination of Phenylalanine Ammonia Lyase and Aminomutase Biocatalysts. Advanced Synthesis and Catalysis, 2017, 359, 1570-1576.	2.1	15
274	Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: A self-sufficient P450 with high expression and diverse substrate scope. Enzyme and Microbial Technology, 2018, 113, 1-8.	1.6	15
275	Biomimetic synthesis of 2-substituted N-heterocycle alkaloids by one-pot hydrolysis, transamination and decarboxylative Mannich reaction. Chemical Communications, 2018, 54, 11316-11319.	2.2	15
276	GeneORator: An Effective Strategy for Navigating Protein Sequence Space More Efficiently through Boolean OR-Type DNA Libraries. ACS Synthetic Biology, 2019, 8, 1371-1378.	1.9	15
277	Evidence for epoxide formation from isopenicillin N synthase. Journal of the Chemical Society Chemical Communications, 1989, , 978.	2.0	14
278	Chemo-enzymic synthesis of guanosine 5′-diphosphomannose (GDP-mannose) and selected analogues. Journal of the Chemical Society Perkin Transactions 1, 1993, , 3017-3022.	0.9	14
279	n-Butylamine as an alternative amine donor for the stereoselective biocatalytic transamination of ketones. Catalysis Today, 2018, 306, 96-101.	2.2	14
280	Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen. Angewandte Chemie, 2018, 130, 10695-10699.	1.6	14
281	Biocatalysis: Ready to Master Increasing Complexity. Advanced Synthesis and Catalysis, 2019, 361, 2373-2376.	2.1	14
282	Enzymatic synthesis of a new type of penicillin. Journal of the Chemical Society Chemical Communications, 1986, , 975.	2.0	13
283	Rapid identification of cytochrome P450cam variants by in vivo screening of active site libraries. Tetrahedron: Asymmetry, 2004, 15, 2829-2831.	1.8	13
284	Dimedone Esters as Novel Hydrolase Substrates and their Application in the Colorimetric Detection of Lipase and Esterase Activity. ChemBioChem, 2004, 5, 1144-1148.	1.3	13
285	Whole-cell microtiter plate screening assay for terminal hydroxylation of fatty acids by P450s. Chemical Communications, 2016, 52, 6158-6161.	2.2	13
286	Semi-Rational Design of Geobacillus stearothermophilus L-Lactate Dehydrogenase to Access Various Chiral α-Hydroxy Acids. Applied Biochemistry and Biotechnology, 2016, 179, 474-484.	1.4	13
287	Discovery of a new metal and NAD ⁺ -dependent formate dehydrogenase from <i>Clostridium ljungdahlii</i> . Preparative Biochemistry and Biotechnology, 2018, 48, 327-334.	1.0	13
288	Biocatalytic Conversion of Cyclic Ketones Bearing αâ€Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium‣ized Carbocycles. Angewandte Chemie, 2018, 130, 3754-3758.	1.6	13

#	Article	IF	CITATIONS
289	The crystal structure of P450-TT heme-domain provides the first structural insights into the versatile class VII P450s. Biochemical and Biophysical Research Communications, 2018, 501, 846-850.	1.0	13
290	Synthesis of protected 3-aminopiperidine and 3-aminoazepane derivatives using enzyme cascades. Chemical Communications, 2020, 56, 7949-7952.	2.2	13
291	Rapid Screening of Diverse Biotransformations for Enzyme Evolution. Jacs Au, 2021, 1, 508-516.	3.6	13
292	Enzymic conversion of deuterated analogues of δα-aminoadipoyl–cysteinylallylglycine, an unnatural substrate for isopenicilin n synthase: A unified theory of second ring closure Tetrahedron, 1991, 47, 8223-8242.	1.0	12
293	Novel Mechanism of Inhibition of Elastase by β-Lactams Is Defined by Two Inhibitor Crystal Complexes. Journal of Biological Chemistry, 1999, 274, 24901-24905.	1.6	12
294	The enzymatic glucuronidation of 3-O-protected morphine—a new route to 7,8-dihydromorphine-6-glucuronide. Tetrahedron: Asymmetry, 2000, 11, 413-416.	1.8	12
295	Rapid and sensitive monitoring of biocatalytic reactions using ion mobility mass spectrometry. Analyst, The, 2016, 141, 2351-2355.	1.7	12
296	Biocatalytic Routes to Enantiomerically Enriched Dibenz[<i>c</i> , <i>e</i>]azepines. Angewandte Chemie, 2017, 129, 15795-15799.	1.6	12
297	Efficient synthesis of α-alkyl-β-amino amides by transaminase-mediated dynamic kinetic resolutions. Catalysis Science and Technology, 2019, 9, 4083-4090.	2.1	12
298	Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis. PLoS ONE, 2017, 12, e0184183.	1.1	12
299	Oneâ€Pot Biocatalytic In Vivo Methylationâ€Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to Lâ€ĐOPA. Angewandte Chemie - International Edition, 2022, 61, .	7.2	12
300	Amine dehydrogenases: Current status and potential value for chiral amine synthesis. Chem Catalysis, 2022, 2, 1288-1314.	2.9	12
301	Microbial hydrolysis of glutaronitrile derivatives with brevibacterium sp. R 312. Bioorganic and Medicinal Chemistry, 1994, 2, 447-455.	1.4	11
302	Crystallisation-induced dynamic resolution of dipeptide-derived 5(4H)-oxazolones. Tetrahedron Letters, 1996, 37, 6575-6578.	0.7	11
303	Molecular modelling studies of substrate binding to the lipase from Rhizomucor miehei. Journal of Computer-Aided Molecular Design, 1997, 11, 256-264.	1.3	11
304	A stereospecific solid-phase screening assay for colonies expressing both (<i>R</i>)- and (<i>S</i>) Tj ETQq0 0 Engineering Sciences, 2016, 374, 20150084.	0 rgBT /Ov 1.6	verlock 10 Tf 11
305	Biocatalytic Potential of Enzymes Involved in the Biosynthesis of Isoprenoid Quinones. ChemCatChem, 2018, 10, 124-135.	1.8	11
306	Characterization of a Putrescine Transaminase From Pseudomonas putida and its Application to the Synthesis of Benzylamine Derivatives. Frontiers in Bioengineering and Biotechnology, 2018, 6, 205.	2.0	11

#	Article	IF	CITATIONS
307	Oneâ€pot Chemoenzymatic Deracemisation of Secondary Alcohols Employing Variants of Galactose Oxidase and Transfer Hydrogenation. ChemCatChem, 2020, 12, 6191-6195.	1.8	11
308	Enzymkatalysierte spÃæ Modifizierungen: Besser spÃæals nie. Angewandte Chemie, 2021, 133, 16962-16993.	1.6	11
309	Design and Synthesis of Conformationally Constrained Cyclophilin Inhibitors Showing a Cyclosporinâ€A Phenotype in <i>C. elegans</i> . ChemBioChem, 2011, 12, 802-810.	1.3	10
310	Characterization of a new acidic NAD + -dependent formate dehydrogenase from thermophilic fungus Chaetomium thermophilum. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 212-217.	1.8	10
311	Integrated Electroâ€Biocatalysis for Amine Alkylation with Alcohols. ChemCatChem, 2021, 13, 864-867.	1.8	10
312	Asymmetric Synthesis of N â€Substituted αâ€Amino Esters from αâ€Ketoesters via Imine Reductaseâ€Catalyzed Reductive Amination. Angewandte Chemie, 2021, 133, 8799-8803.	1.6	10
313	Immobilisation and kinetics of monoamine oxidase (MAO-N-D5) enzyme in polyvinyl alcohol gels. Journal of Molecular Catalysis B: Enzymatic, 2016, 129, 69-74.	1.8	9
314	Recommendations on the Implementation of Genetic Algorithms for the Directed Evolution of Enzymes for Industrial Purposes. ChemBioChem, 2017, 18, 1087-1097.	1.3	9
315	Realâ€Time Monitoring of Enzymeâ€Catalysed Reactions using Deep UV Resonance Raman Spectroscopy. Chemistry - A European Journal, 2017, 23, 6983-6987.	1.7	9
316	Chemo-biocatalytic one-pot two-step conversion of cyclic amine to lactam using whole cell monoamine oxidase. Journal of Chemical Technology and Biotechnology, 2017, 92, 1558-1565.	1.6	9
317	Discovery and Investigation of Mutase-like Activity in a Phenylalanine Ammonia Lyase from Anabaena variabilis. Topics in Catalysis, 2018, 61, 288-295.	1.3	9
318	Enzymatic <i>N</i> -Allylation of Primary and Secondary Amines Using Renewable Cinnamic Acids Enabled by Bacterial Reductive Aminases. ACS Sustainable Chemistry and Engineering, 2022, 10, 6794-6806.	3.2	9
319	A Nanoconfined Four-Enzyme Cascade Simultaneously Driven by Electrical and Chemical Energy, with Built-in Rapid, Confocal Recycling of NADP(H) and ATP. ACS Catalysis, 2022, 12, 8811-8821.	5.5	9
320	Identification and characterisation of shunt metabolites from isopenicillin N synthase. Journal of the Chemical Society Chemical Communications, 1988, , 1125.	2.0	8
321	Deracemization and Enantioconvergent Processes. , 0, , 115-131.		8
322	Characterisation of CYP102A25 from <i>Bacillus marmarensis</i> and CYP102A26 from <i>Pontibacillus halophilus</i> : P450 Homologues of BM3 with Preference towards Hydroxylation of Mediumâ€Chain Fatty Acids. ChemBioChem, 2018, 19, 513-520.	1.3	8
323	Regio―and Enantioâ€selective Chemoâ€enzymatic Câ^'Hâ€Lactonization of Decanoic Acid to (<i>S</i>)â€Ĵ´â€Decalactone. Angewandte Chemie, 2019, 131, 5724-5727.	1.6	8
324	Chemoenzymatic synthesis of 3-deoxy-3-fluoro- <scp>l</scp> -fucose and its enzymatic incorporation into glycoconjugates. Chemical Communications, 2020, 56, 6408-6411.	2.2	8

#	Article	IF	CITATIONS
325	Cephalosporin C biosynthesis; stereochemistry of the incorporation ofD,L,D-α-aminodipoyl-cysteinyl-(3S)-[2-2H,4-13C]valine into β-lactam compounds. Journal of the Chemical Society Chemical Communications, 1989, , 1141-1143.	2.0	7
326	Synthesis of a novel acceptor substrate for a mannosyl transferase. Journal of the Chemical Society Chemical Communications, 1991, , 380.	2.0	7
327	Agar Plate-based Assays. , 2006, , 137-161.		7
328	Biocatalysis. Catalysis Science and Technology, 2012, 2, 1523.	2.1	7
329	SYNBIOCHEM–a SynBio foundry for the biosynthesis and sustainable production of fine and speciality chemicals. Biochemical Society Transactions, 2016, 44, 675-677.	1.6	7
330	Enzymes team up with light-activated catalysts. Nature, 2018, 560, 310-311.	13.7	7
331	Biotechnological synthesis of Pd/Ag and Pd/Au nanoparticles for enhanced Suzuki–Miyaura crossâ€coupling activity. Microbial Biotechnology, 2021, 14, 2435-2447.	2.0	7
332	The Application of Enzymes in the Synthesis of Amino Acids, Peptides and Carbohydrates. Current Organic Chemistry, 1997, 1, 21-36.	0.9	7
333	Regio- and stereoselective oxidation of unactivated C–H bonds with Rhodococcus rhodochrous. Beilstein Journal of Organic Chemistry, 2012, 8, 496-500.	1.3	6
334	The Enzyme Spring: Biocatalysis at its Best. ChemCatChem, 2014, 6, 900-901.	1.8	6
335	Engineering Biocatalysts for Synthesis Including Cascade Processes. Advanced Synthesis and Catalysis, 2015, 357, 1565-1566.	2.1	6
336	From Multistep Enzyme Monitoring to Whole-Cell Biotransformations: Development of Real-Time Ultraviolet Resonance Raman Spectroscopy. Analytical Chemistry, 2017, 89, 12527-12532.	3.2	6
337	Oneâ€Pot Synthesis of Chiral N â€Arylamines by Combining Biocatalytic Aminations with Buchwald–Hartwig N â€Arylation. Angewandte Chemie, 2020, 132, 18313-18317.	1.6	6
338	Substituent effects on axial chirality in 1-aryl-3,4-dihydroisoquinolines: controlling the rate of bond rotation. Tetrahedron, 2016, 72, 5172-5177.	1.0	5
339	Cloning and upscale production of monoamine oxidase N (MAO-N D5) by Pichia pastoris. Biotechnology Letters, 2018, 40, 127-133.	1.1	5
340	Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angewandte Chemie, 2019, 131, 5002-5006.	1.6	5
341	An Engineered Cholesterol Oxidase Catalyses Enantioselective Oxidation of Nonâ€steroidal Secondary Alcohols. ChemBioChem, 2022, 23, .	1.3	5
342	Synthesis of 1,3-Disubstituted Azetidines via a Tandem Ring-Opening Ring-Closing Procedure. Synlett, 2012, 23, 1511-1515.	1.0	4

#	Article	IF	CITATIONS
343	Sustainable catalysis. Beilstein Journal of Organic Chemistry, 2016, 12, 1778-1779.	1.3	4
344	Biâ€enzymatic Conversion of Cinnamic Acids to 2â€Arylethylamines. ChemCatChem, 2020, 12, 995-998.	1.8	4
345	Redox surrogate methods for sustainable amine N-alkylation. Current Opinion in Chemical Engineering, 2020, 30, 60-68.	3.8	4
346	Title is missing!. Biotechnology Letters, 2001, 23, 119-124.	1.1	3
347	Nucleotide Sequence of a Portion of the Camphor-degrading Gene Cluster fromRhodococcussp. NCIMB 9784. DNA Sequence, 2004, 15, 96-103.	0.7	3
348	A facile and regioselective multicomponent synthesis of chiral aryl-1,2-mercaptoamines in water followed by monoamine oxidase (MAO-N) enzymatic resolution. Organic and Biomolecular Chemistry, 2019, 17, 8982-8986.	1.5	3
349	Identifying an iodinase. Nature Chemistry, 2019, 11, 1076-1078.	6.6	3
350	Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades**. Angewandte Chemie, 2021, 133, 18808-18813.	1.6	3
351	Penicillin biosynthesis: active substrates derived by methoxy substitution in the valinyl residue of the natural substrate. Journal of the Chemical Society Chemical Communications, 1989, , 802.	2.0	2
352	Asymmetric synthesis using enzymes and whole cells. , 1996, , 260-274.		2
353	Chemoenzymatic Routes to Enantiomerically Pure Amino Acids and Amines. , 0, , 21-39.		2
354	Chemoâ€Enzymatic Synthesis of Pyrazines and Pyrroles. Angewandte Chemie, 2018, 130, 17002-17005.	1.6	2
355	Functional Group Transformations Mediated by Whole Cells and Strategies for the Efficient Synthesis of Optically Pure Chiral Intermediates. NATO Science Series Partnership Sub-series 1, Disarmament Technologies, 2000, , 71-94.	0.1	2
356	Oneâ€Pot Biocatalytic In Vivo Methylationâ€Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to Lâ€DOPA. Angewandte Chemie, 2022, 134, .	1.6	2
357	Chapter 11. Biological chemistry. Part (i) Enzyme chemistry. Annual Reports on the Progress of Chemistry Section B, 1988, 85, 307.	0.8	1
358	Chapter 11. Enzyme chemistry. Annual Reports on the Progress of Chemistry Section B, 1989, 86, 307.	0.8	1
359	Chapter 11. Enzyme chemistry. Annual Reports on the Progress of Chemistry Section B, 1990, 87, 333.	0.8	1
360	Selective Chemical Intervention in the Proteome of <i>Caenorhabditis elegans</i> . Journal of Proteome Research, 2010, 9, 6060-6070.	1.8	1

#	Article	IF	CITATIONS
361	Titelbild: Enzymkatalysierte spÃæ Modifizierungen: Besser späals nie (Angew. Chem. 31/2021). Angewandte Chemie, 2021, 133, 16853-16853.	1.6	1
362	Synthesis of pharmaceutically relevant 2â€aminotetralin andÂ3â€aminochroman derivatives via enzymatic reductive amination. Angewandte Chemie, 2021, 133, 24661.	1.6	1
363	Enzyme Cascade Design: Retrosynthesis Approach. , 2021, , 7-30.		1
364	Development of a Solid Phase Array Assay for the Screening of Galactose Oxidase Activity and for Fast Identification of Inhibitors. Protein and Peptide Letters, 2017, 24, 742-746.	0.4	1
365	Direct enzymatic synthesis of fatty amines from renewable triglycerides and oils. ChemBioChem, 2021, , \cdot	1.3	1
366	Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase. Angewandte Chemie, 0, , .	1.6	1
367	Oneâ€Step Biocatalytic Synthesis of Sustainable Surfactants by Selective Amide Bond Formation**. Angewandte Chemie, 2022, 134, .	1.6	1
368	Solid-Supported Cyclohexane-1,3-dione (CHD): A "Capture and Release―Reagent for the Synthesis of Amides and Novel Scavenger Resin ChemInform, 2003, 34, no.	0.1	0
369	Directed Evolution of Enzymes: New Biocatalysts for Asymmetric Synthesis. ChemInform, 2004, 35, no.	0.1	0
370	Enzyme-Catalyzed Deracemization and Dynamic Kinetic Resolution Reactions. ChemInform, 2005, 36, no.	0.1	0
371	Efficient Palladium-Catalyzed Cross-Coupling of ?-Chloroalkylidene/Arylidene Malonates Using Microwave Chemistry ChemInform, 2005, 36, no.	0.1	0
372	Microwave-Assisted Sequential Amide Bond Formation and Intramolecular Amidation: A Rapid Entry to Functionalized Oxindoles ChemInform, 2005, 36, no.	0.1	0
373	Innentitelbild: Ganzzellenâ€Biokatalysator für stereoselektive Câ€Hâ€Aminierungen (Angew. Chem. 4/2016). Angewandte Chemie, 2016, 128, 1234-1234.	1.6	0
374	Front Cover Picture: NAD(P)Hâ€Dependent Dehydrogenases for the Asymmetric Reductive Amination of Ketones: Structure, Mechanism, Evolution and Application (Adv. Synth. Catal. 12/2017). Advanced Synthesis and Catalysis, 2017, 359, 2009-2009.	2.1	0
375	Providing sustainable catalytic solutions for a rapidly changing world. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170309.	1.6	Ο
376	Providing sustainable catalytic solutions for a rapidly changing world. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180414.	1.0	0
377	Rücktitelbild: Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades (Angew. Chem. 34/2021). Angewandte Chemie, 2021, 133, 19040-19040.	1.6	0
378	Use of Enzymes as Catalysts in Key Reactions Leading to the Synthesis of Optically Active Natural Products and Analogues. , 1992, , 93-111.		0

#	Article	IF	CITATIONS
379	The application of microbial methods to the synthesis of chiral fine chemicals. Advances in Asymmetric Synthesis, 1997, , 285-307.	0.4	0
380	Dataâ€driven enzyme immobilisation: a case study using DNA to immobilise galactose oxidase. Engineering Biology, 2020, 4, 43-46.	0.8	0
381	Biocatalysis: Improving Enzymatic Processes through Protein and Reaction Engineering. Organic Process Research and Development, 2022, 26, 1855-1856.	1.3	0