Emily Day

List of Publications by Citations

Source: https://exaly.com/author-pdf/6562453/emily-day-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,472 47 24 53 h-index g-index citations papers 6.32 4,068 7.4 53 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
47	A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. <i>Small</i> , 2011 , 7, 169-83	11	668
46	Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. <i>Science Translational Medicine</i> , 2013 , 5, 209ra152	17.5	377
45	Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1449	9.2	364
44	Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. <i>ACS Nano</i> , 2015 , 9, 6-11	16.7	357
43	Immunonanoshells for targeted photothermal ablation of tumor cells. <i>International Journal of Nanomedicine</i> , 2006 , 1, 149-54	7.3	219
42	Nanoparticles for thermal cancer therapy. <i>Journal of Biomechanical Engineering</i> , 2009 , 131, 074001	2.1	182
41	miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. <i>Genes and Development</i> , 2015 , 29, 732-45	12.6	153
40	Nanoshell-mediated photothermal therapy improves survival in a murine glioma model. <i>Journal of Neuro-Oncology</i> , 2011 , 104, 55-63	4.8	106
39	Antibody-conjugated gold-gold sulfide nanoparticles as multifunctional agents for imaging and therapy of breast cancer. <i>International Journal of Nanomedicine</i> , 2010 , 5, 445-54	7.3	106
38	The stabilization and targeting of surfactant-synthesized gold nanorods. <i>Nanotechnology</i> , 2009 , 20, 434	109045	82
37	Vascular-targeted photothermal therapy of an orthotopic murine glioma model. <i>Nanomedicine</i> , 2012 , 7, 1133-48	5.6	59
36	Nanoshells for photothermal cancer therapy. <i>Methods in Molecular Biology</i> , 2010 , 624, 101-17	1.4	58
35	Cancer Cell Membrane-Coated Nanoparticles for Cancer Management. <i>Cancers</i> , 2019 , 11,	6.6	56
34	Spherical Nucleic Acid Nanoparticles: Therapeutic Potential. <i>BioDrugs</i> , 2018 , 32, 297-309	7.9	52
33	Using Gold Nanoparticles To Disrupt the Tumor Microenvironment: An Emerging Therapeutic Strategy. <i>ACS Nano</i> , 2016 , 10, 10631-10635	16.7	47
32	Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. <i>International Journal of Nanomedicine</i> , 2015 , 10, 6931-41	7.3	44
31	Frizzled7 Antibody-Functionalized Nanoshells Enable Multivalent Binding for Wnt Signaling Inhibition in Triple Negative Breast Cancer Cells. <i>Small</i> , 2017 , 13, 1700544	11	43

(2020-2018)

Evaluating the Mechanisms of Light-Triggered siRNA Release from Nanoshells for Temporal Control Over Gene Regulation. <i>Nano Letters</i> , 2018 , 18, 3565-3570	11.5	38
Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. <i>Nano Research</i> , 2018 , 11, 4999-5016	10	38
Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. <i>PLoS ONE</i> , 2017 , 12, e0177592	3.7	34
Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. <i>Oncotarget</i> , 2018 , 9, 27000-27015	3.3	30
Nanoparticle-Mediated Co-Delivery of Notch-1 Antibodies and ABT-737 as a Potent Treatment Strategy for Triple-Negative Breast Cancer. <i>ACS Nano</i> , 2020 , 14, 3378-3388	16.7	27
Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery. <i>Molecular Therapy - Nucleic Acids</i> , 2018 , 12, 207-219	10.7	27
Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. <i>Cellular and Molecular Bioengineering</i> , 2018 , 11, 383-396	3.9	22
Gold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies. <i>ACS Omega</i> , 2020 , 5, 926-940	3.9	22
IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. Journal of Biomedical Materials Research - Part A, 2019 , 107, 1702-1712	5.4	19
Dual Regulation of miR-34a and Notch Signaling in Triple-Negative Breast Cancer by Antibody/miRNA Nanocarriers. <i>Molecular Therapy - Nucleic Acids</i> , 2020 , 21, 290-298	10.7	18
Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells. <i>Nanomaterials</i> , 2018 , 8,	5.4	18
Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. <i>Inorganic Chemistry</i> , 2018 , 57, 10608-10615	5.1	17
Polyethylenimine-Spherical Nucleic Acid Nanoparticles against Gli1 Reduce the Chemoresistance and Stemness of Glioblastoma Cells. <i>Molecular Pharmaceutics</i> , 2018 , 15, 5135-5145	5.6	17
Polymer nanocarriers for MicroRNA delivery. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 48651	2.9	16
Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells. <i>Journal of Biomedical Materials Research - Part A</i> , 2020 , 108, 601-613	5.4	15
Quantification of siRNA Duplexes Bound to Gold Nanoparticle Surfaces. <i>Methods in Molecular Biology</i> , 2017 , 1570, 1-15	1.4	14
Design of nanomaterials for applications in maternal/fetal medicine. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 6548-6561	7.3	10
Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. <i>Nano Research</i> , 2020 , 13, 1693-1703	10	9
	Control Over Gene Regulation. Nano Letters, 2018, 18, 3565-3570 Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. Nano Research, 2018, 11, 4999-5016 Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS ONE, 2017, 12, e0177592 Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget, 2018, 9, 27000-27015 Nanoparticle-Mediated Co-Delivery of Notch-1 Antibodies and ABT-737 as a Potent Treatment Strategy for Triple-Negative Breast Cancer. ACS Nano, 2020, 14, 3378-3388 Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery. Molecular Therapy - Nucleic Acids, 2018, 12, 207-219 Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cellular and Molecular Bioengineering, 2018, 11, 383-396 Cold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies. ACS Omega, 2020, 5, 926-940 IR820-loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. Journal of Biomedical Materials Research - Part A, 2019, 107, 1702-1712 Dual Regulation of miR-34a and Notch Signaling in Triple-Negative Breast Cancer by Antibody/miRNA Nanocarriers. Molecular Therapy - Nucleic Acids, 2020, 21, 290-298 Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells. Nanomaterials, 2018, 8, Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorganic Chemistry, 2018, 57, 10608-10615 Polyethylenimine-Spherical Nucleic Acid Nanoparticles against Gli1 Reduce the Chemoresistance and Stemness of Glioblastoma Cells. Molecular Pharmaceutics, 2018, 15, 5135-5145 Polymer nanocarriers for MicroRNA delivery. Journal of Applied Polymer Science, 2020, 137, 48651 Layer-by-layer assembled PLGA nanoparticles carryin	Advances in targeted nanotherapeutics: From bioconjugation to biomimicry. Nano Research, 2018, 11, 4999-5016 Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS ONE, 2017, 12, e0177592 Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget, 2018, 9, 27000-27015 Nanoparticle-Mediated Co-Delivery of Notch-1 Antibodies and ABT-737 as a Potent Treatment Strategy for Triple-Negative Breast Cancer. ACS Nano, 2020, 14, 3378-3388 16-7 Spherical Nucleic Acid Architecture Can Improve the Efficacy of Polycation-Mediated siRNA Delivery. Molecular Therapy - Nucleic Acids, 2018, 12, 207-219 Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cellular and Molecular Bioengineering, 2018, 11, 383-396 Gold Nanoshell-Linear Tetrapyrrole Conjugates for Near Infrared-Activated Dual Photodynamic and Photothermal Therapies. ACS Omega, 2020, 5, 926-940 IRB2O-Loaded PLGA nanoparticles for photothermal therapy of triple-negative breast cancer. Journal of Biomedical Materials Research - Part A, 2019, 107, 1702-1712 Dual Regulation of miR-34a and Notch Signaling in Triple-Negative Breast Cancer by Antibody/miRNA Nanocarriers. Molecular Therapy - Nucleic Acids, 2020, 21, 290-298 Evaluating Nanoshells and a Potent Biladiene Photosensitizer for Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Dual Photothermal and Photodynamic Therapy of Triple Negative Breast Cancer Cells. Nanomaterials, 2018, 8, Photochemotherapeutic Properties of a Linear Tetrapyrrole Palladium(II) Complex displaying an Exceptionally High Phototoxicity Index. Inorganic Chemistry, 2018, 57, 10608-10615 Polymer nanocarriers for MicroRNA delivery. Journal of Applied Polymer Science, 2020, 137, 48651 2-9 Layer-by-layer assembled PLGA nanoparticles carrying miR-34a cargo inhibit the proliferation and cell cycle progression of triple-negative breast cancer cells. Journal of Biomedical Materials Research - Pa

12	Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer. <i>Annals of Biomedical Engineering</i> , 2020 , 48, 1864-1884	4.7	7
11	Best Practices for Preclinical In Vivo Testing of Cancer Nanomedicines. <i>Advanced Healthcare Materials</i> , 2020 , 9, e2000110	10.1	5
10	Enzyme-Linked Immunosorbent Assay to Quantify Targeting Molecules on Nanoparticles. <i>Methods in Molecular Biology</i> , 2018 , 1831, 145-157	1.4	4
9	Diseases and conditions that impact maternal and fetal health and the potential for nanomedicine therapies. <i>Advanced Drug Delivery Reviews</i> , 2021 , 170, 425-438	18.5	4
8	Photoresponsive miR-34a/Nanoshell Conjugates Enable Light-Triggered Gene Regulation to Impair the Function of Triple-Negative Breast Cancer Cells. <i>Nano Letters</i> , 2021 , 21, 68-76	11.5	4
7	Nanoparticle-Mediated Gene Regulation as a Novel Strategy for Cancer Therapy. <i>Delaware Journal of Public Health</i> , 2017 , 3, 20-24	0.1	2
6	Biomimetic Nanoparticles for the Treatment of Hematologic Malignancies. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000047	0	2
5	Gold nanoparticle biodistribution in pregnant mice following intravenous administration varies with gestational age. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2021 , 36, 102412	6	1
4	Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. <i>Bioconjugate Chemistry</i> , 2021 , 32, 2245-2256	6.3	1
3	Antibody Nanocarriers for Cancer Management. <i>Current Opinion in Biomedical Engineering</i> , 2021 , 19, 100295-100295	4.4	Ο
2	Preparation and Characterization of Optically-Resonant Atomically Flat Nanosurface Substrates for High-Resolution Scanning Probe Microscopy of Single Molecules. <i>Microscopy and Microanalysis</i> , 2006 , 12, 510-511	0.5	
1	Biomedical Applications of Multi-Functional Silica-Based Gold Nanoshells 2011 , 633-662		