Jun Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6562357/publications.pdf

Version: 2024-02-01

759190 794568 31 396 12 19 citations h-index g-index papers 31 31 31 365 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Microstructure, interfacial IMC and mechanical properties of Sn–0.7Cu–xAl (x=0–0.075) lead-free solder alloy. Materials & Design, 2015, 67, 209-216.	5.1	53
2	Effect of Ca and Sr on the compressive creep behavior of Mg–4Al–RE based magnesium alloys. Materials & Design, 2014, 63, 439-445.	5.1	40
3	Investigation on the optimized heat treatment procedure for laser fabricated IN718 alloy. Optics and Laser Technology, 2017, 97, 172-179.	4.6	39
4	Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition. Optics and Laser Technology, 2016, 80, 220-226.	4.6	32
5	Effect of nanosized graphite on properties of Sn–Bi solder. Journal of Materials Science: Materials in Electronics, 2013, 24, 4180-4185.	2.2	31
6	Effect of Ca and Sr on microstructure and compressive creep property of Mg–4Al–RE alloys. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 309-314.	5.6	23
7	Effect of aluminum concentration on the microstructure and mechanical properties of Sn–Cu–Al solder alloy. Microelectronics Reliability, 2015, 55, 596-601.	1.7	23
8	Influence of BaTiO3 Nanoparticle Addition on Microstructure and Mechanical Properties of Sn-58Bi Solder. Journal of Electronic Materials, 2015, 44, 2473-2478.	2.2	21
9	Effect of BaTiO3 on the microstructure and mechanical properties of Sn1.0Ag0.5Cu lead-free solder. Journal of Materials Science: Materials in Electronics, 2015, 26, 613-619.	2.2	16
10	Effects of heat treatments on laser welded Mg-rare earth alloy NZ30K. Materials Science & Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 401-405.	5.6	14
11	Study of plasma in laser welding of magnesium alloy. International Journal of Advanced Manufacturing Technology, 2014, 73, 443-447.	3.0	12
12	Effects of Ti, Ni, and Dual Ti/Ni Plasma Immersion Ion Implantation on the Corrosion and Wear Properties of Magnesium Alloy. Coatings, 2020, 10, 313.	2.6	12
13	Electromigration reliability for Al2O3-reinforced Cu/Sn–58Bi/Cu composite solder joints. Journal of Materials Science: Materials in Electronics, 2017, 28, 3004-3012.	2.2	10
14	Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu-xNi/Cu Solder Joints. Journal of Electronic Materials, 2016, 45, 3766-3775.	2.2	9
15	Study on pulsed laser welding of AZ31B Mg and 6061 Al alloys using Cu interlayer. Materials Research Express, 2019, 6, 046553.	1.6	8
16	Corrosion Behavior and Mechanism of Carbon Ion-Implanted Magnesium Alloy. Coatings, 2020, 10, 734.	2.6	7
17	Improvement of the Laser-Welded Lap Joint of Dissimilar Mg Alloy and Cu by Incorporation of a Zn Interlayer. Materials, 2020, 13, 2053.	2.9	7
18	Laser Welding of Dissimilar Metal Joint of 6061 Al Alloy and Al Matrix Composite. Advances in Materials Science and Engineering, 2019, 2019, 1-6.	1.8	6

#	Article	IF	CITATIONS
19	Research on Laser Welding of Mg-Rare Earth Alloy Mg-3Nd-0.2Zn-0.4Zr. Journal of Materials Engineering and Performance, 2012, 21, 208-212.	2.5	5
20	Effects of Heat Input on Microstructure and Mechanical Properties of Laser-Welded Mg-Rare Earth Alloy. Journal of Materials Engineering and Performance, 2013, 22, 64-70.	2.5	5
21	Interfacial IMC Layer and Tensile Properties of Ni-Reinforced Cu/Sn–0.7Cu–0.05Ni/Cu Solder Joint: Effect of Aging Temperature. Transactions of the Indian Institute of Metals, 2017, 70, 2429-2439.	1.5	5
22	Effects of Aging Treatment on Laser-Welded Mg-Rare Earth Alloy NZ30K. Advances in Materials Science and Engineering, 2013, 2013, 1-7.	1.8	4
23	Study on the Indentation Creep Behavior of Mg-4Al-RE-0.8Ca Magnesium Alloy. Journal of Materials Engineering and Performance, 2015, 24, 4290-4296.	2.5	4
24	Tribological Behavior of IN718 Superalloy Coating Fabricated by Laser Additive Manufacturing. Lasers in Manufacturing and Materials Processing, 2017, 4, 153-167.	2.2	4
25	Microstructure and mechanical properties of high power CO2 laser welded joint of Mg-Rare earth alloy NZ30K. Physics Procedia, 2010, 5, 511-516.	1.2	3
26	Precipitate morphology and effects on strength of laser welded Mg–Nd–Zn–Zr after aging treatment. Materials Science and Technology, 2013, 29, 1478-1483.	1.6	1
27	Effects of different interlayers on the microstructure and properties of Mg/Cu dissimilar alloy welded joints. Journal of Laser Applications, 2021, 33, 012055.	1.7	1
28	Investigations on laser welding of magnesium alloys. International Journal of Materials Research, 2012, 103, 1218-1222.	0.3	1
29	Laser Hybrid Welding Processing of Mg-Rare Earth Alloy. Advanced Materials Research, 0, 311-313, 2367-2370.	0.3	0
30	Effect of Powder Interlayer on Copper Alloy Lap Joint by Laser Welding. Transactions of the Indian Institute of Metals, 2020, 73, 2577-2585.	1.5	0
31	Effect of Heat Treatment on Microstructure and Properties of Laser Welded Joint of 304 Stainless Steel Plate. , 2017, , .		О