
Laura D Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6562076/publications.pdf Version: 2024-02-01

LALIDA D KDAMED

#	Article	IF	CITATIONS
1	Impact of daily temperature fluctuations on dengue virus transmission by <i>Aedes aegypti</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7460-7465.	3.3	587
2	A Global Perspective on the Epidemiology of West Nile Virus. Annual Review of Entomology, 2008, 53, 61-81.	5.7	434
3	Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: Evidence for the emergence of a dominant genotype. Virology, 2005, 342, 252-265.	1.1	231
4	A Newly Emergent Genotype of West Nile Virus Is Transmitted Earlier and More Efficiently by Culex Mosquitoes. American Journal of Tropical Medicine and Hygiene, 2007, 77, 365-370.	0.6	228
5	The Effect of Temperature on Life History Traits of <i>Culex</i> Mosquitoes. Journal of Medical Entomology, 2014, 51, 55-62.	0.9	197
6	Global genetic diversity of <i>Aedes aegypti</i> . Molecular Ecology, 2016, 25, 5377-5395.	2.0	195
7	Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. Journal of General Virology, 2005, 86, 2175-2183.	1.3	177
8	Quantitation of flaviviruses by fluorescent focus assay. Journal of Virological Methods, 2006, 134, 183-189.	1.0	176
9	Wolbachia Enhances West Nile Virus (WNV) Infection in the Mosquito Culex tarsalis. PLoS Neglected Tropical Diseases, 2014, 8, e2965.	1.3	160
10	Dissecting vectorial capacity for mosquito-borne viruses. Current Opinion in Virology, 2015, 15, 112-118.	2.6	156
11	Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Research, 2017, 27, 1046-1064.	5.7	153
12	A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. American Journal of Tropical Medicine and Hygiene, 2007, 77, 365-70.	0.6	149
13	A Multicomponent Animal Virus Isolated from Mosquitoes. Cell Host and Microbe, 2016, 20, 357-367.	5.1	123
14	Vector-Virus Interactions and Transmission Dynamics of West Nile Virus. Viruses, 2013, 5, 3021-3047.	1.5	119
15	A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathogens, 2017, 13, e1006411.	2.1	116
16	Detection by Enzyme-Linked Immunosorbent Assay of Antibodies to <i>West Nile virus</i> in Birds. Emerging Infectious Diseases, 2002, 8, 979-982.	2.0	114
17	The West Nile virus mutant spectrum is host-dependant and a determinant of mortality in mice. Virology, 2007, 360, 469-476.	1.1	104
18	West Nile Virus Experimental Evolution in vivo and the Trade-off Hypothesis. PLoS Pathogens, 2011, 7, e1002335.	2.1	98

LAURA D KRAMER

#	Article	IF	CITATIONS
19	Spatial and Temporal Variation in Vector Competence of Culex pipiens and Cx. restuans Mosquitoes for West Nile Virus. American Journal of Tropical Medicine and Hygiene, 2010, 83, 607-613.	0.6	88
20	Role of the mutant spectrum in adaptation and replication of West Nile virus. Journal of General Virology, 2007, 88, 865-874.	1.3	83
21	Cell-specific adaptation of two flaviviruses following serial passage in mosquito cell culture. Virology, 2007, 357, 165-174.	1.1	77
22	Genetic diversity and purifying selection in West Nile virus populations are maintained during host switching. Virology, 2008, 374, 256-260.	1.1	76
23	Erythrosin B is a potent and broad-spectrum orthosteric inhibitor of the flavivirus NS2B-NS3 protease. Antiviral Research, 2018, 150, 217-225.	1.9	61
24	Evolutionary Dynamics of West Nile Virus in the United States, 1999–2011: Phylogeny, Selection Pressure and Evolutionary Time-Scale Analysis. PLoS Neglected Tropical Diseases, 2013, 7, e2245.	1.3	59
25	West Nile Virus Infection Decreases Fecundity of <i>Culex tarsalis</i> Females. Journal of Medical Entomology, 2007, 44, 1074-1085.	0.9	58
26	Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase. PLoS ONE, 2015, 10, e0130062.	1.1	58
27	Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes. PLoS Pathogens, 2015, 11, e1005009.	2.1	57
28	Cooperative interactions in the West Nile virus mutant swarm. BMC Evolutionary Biology, 2012, 12, 58.	3.2	55
29	Introduction, Spread, and Establishment of West Nile Virus in the Americas. Journal of Medical Entomology, 2019, 56, 1448-1455.	0.9	55
30	Geographic variation in the response of Culex pipiens life history traits to temperature. Parasites and Vectors, 2016, 9, 116.	1.0	52
31	Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Antiviral Research, 2013, 97, 232-239.	1.9	51
32	Characterization of mosquito-adapted West Nile virus. Journal of General Virology, 2008, 89, 1633-1642.	1.3	48
33	Quantification of intrahost bottlenecks of West Nile virus in Culex pipiens mosquitoes using an artificial mutant swarm. Infection, Genetics and Evolution, 2012, 12, 557-564.	1.0	48
34	Blood treatment of Lyme borreliae demonstrates the mechanism of <scp>CspZ</scp> â€mediated complement evasion to promote systemic infection in vertebrate hosts. Cellular Microbiology, 2019, 21, e12998.	1.1	47
35	Experimental Passage of St. Louis Encephalitis Virus In Vivo in Mosquitoes and Chickens Reveals Evolutionarily Significant Virus Characteristics. PLoS ONE, 2009, 4, e7876.	1.1	47
36	West Nile virus in the western hemisphere. Current Opinion in Infectious Diseases, 2001, 14, 519-525.	1.3	43

LAURA D KRAMER

#	Article	IF	CITATIONS
37	Adaptation of two flaviviruses results in differences in genetic heterogeneity and virus adaptability. Journal of General Virology, 2007, 88, 2398-2406.	1.3	41
38	DNA forms of arboviral RNA genomes are generated following infection in mosquito cell cultures. Virology, 2016, 498, 164-171.	1.1	41
39	Increased Replicative Fitness of a Dengue Virus 2 Clade in Native Mosquitoes: Potential Contribution to a Clade Replacement Event in Nicaragua. Journal of Virology, 2014, 88, 13125-13134.	1.5	39
40	Complexity of virus–vector interactions. Current Opinion in Virology, 2016, 21, 81-86.	2.6	37
41	The evolution of virulence of West Nile virus in a mosquito vector: implications for arbovirus adaptation and evolution. BMC Evolutionary Biology, 2013, 13, 71.	3.2	36
42	Point mutations in the West Nile virus (Flaviviridae; Flavivirus) RNA-dependent RNA polymerase alter viral fitness in a host-dependent manner in vitro and in vivo. Virology, 2012, 427, 18-24.	1.1	33
43	JMX0207, a Niclosamide Derivative with Improved Pharmacokinetics, Suppresses Zika Virus Infection Both <i>In Vitro</i> and <i>In Vivo</i> . ACS Infectious Diseases, 2020, 6, 2616-2628.	1.8	32
44	Tickâ€, mosquitoâ€, and rodentâ€borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere, 2016, 7, e01271.	1.0	31
45	Methylene blue is a potent and broad-spectrum inhibitor against Zika virus <i>in vitro</i> and <i>in vivo</i> . Emerging Microbes and Infections, 2020, 9, 2404-2416.	3.0	26
46	Mutagen resistance and mutation restriction of St. Louis encephalitis virus. Journal of General Virology, 2017, 98, 201-211.	1.3	22
47	Nonconsensus West Nile Virus Genomes Arising during Mosquito Infection Suppress Pathogenesis and Modulate Virus Fitness <i>In Vivo</i> . Journal of Virology, 2011, 85, 12605-12613.	1.5	21
48	COVID-19 vaccines under the International Health Regulations – We must use the WHO International Certificate of Vaccination or Prophylaxis. International Journal of Infectious Diseases, 2021, 104, 175-177.	1.5	21
49	Bunyavirus Taxonomy: Limitations and Misconceptions Associated with the Current ICTV Criteria Used for Species Demarcation. American Journal of Tropical Medicine and Hygiene, 2018, 99, 11-16.	0.6	21
50	S-Adenosyl-Homocysteine Is a Weakly Bound Inhibitor for a Flaviviral Methyltransferase. PLoS ONE, 2013, 8, e76900.	1.1	18
51	High levels of local inter- and intra-host genetic variation of West Nile virus and evidence of fine-scale evolutionary pressures. Infection, Genetics and Evolution, 2017, 51, 219-226.	1.0	16
52	Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathogens, 2021, 17, e1009801.	2.1	16
53	Consequences of in vitro host shift for St. Louis encephalitis virus. Journal of General Virology, 2014, 95, 1281-1288.	1.3	15
54	Evolutionary dynamics and molecular epidemiology of West Nile virus in New York State: 1999–2015. Virus Evolution, 2019, 5, vez020.	2.2	14

LAURA D KRAMER

#	Article	IF	CITATIONS
55	Adaptation of Rabensburg virus (RBGV) to vertebrate hosts by experimental evolution. Virology, 2019, 528, 30-36.	1.1	10
56	Zika virus infects Aedes aegypti ovaries. Virology, 2021, 561, 58-64.	1.1	10
57	Vertebrate attenuated West Nile virus mutants have differing effects on vector competence in Culex tarsalis mosquitoes. Journal of General Virology, 2013, 94, 1069-1072.	1.3	9
58	Reversion to ancestral Zika virus NS1 residues increases competence of Aedes albopictus. PLoS Pathogens, 2020, 16, e1008951.	2.1	9
59	Cellular and immunological mechanisms influence host-adapted phenotypes in a vector-borne microparasite. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212087.	1.2	9
60	West Nile virus adaptation to ixodid tick cells is associated with phenotypic trade-offs in primary hosts. Virology, 2015, 482, 128-132.	1.1	8
61	Experimental Evolution of West Nile Virus at Higher Temperatures Facilitates Broad Adaptation and Increased Genetic Diversity. Viruses, 2021, 13, 1889.	1.5	8
62	Divergent Mutational Landscapes of Consensus and Minority Genotypes of West Nile Virus Demonstrate Host and Gene-Specific Evolutionary Pressures. Genes, 2020, 11, 1299.	1.0	7
63	Reservoir hosts experiencing food stress alter transmission dynamics for a zoonotic pathogen. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210881.	1.2	6
64	Adaptive evolution of West Nile virus facilitated increased transmissibility and prevalence in New York State. Emerging Microbes and Infections, 2022, 11, 988-999.	3.0	6
65	West Nile Virus fidelity modulates the capacity for host cycling and adaptation. Journal of General Virology, 2020, 101, 410-419.	1.3	4
66	Evidence of West Nile Virus Circulation in Lebanon. Viruses, 2021, 13, 994.	1.5	3
67	First Complete Genome Sequences of Two Keystone Viruses from Florida. Genome Announcements, 2015, 3, .	0.8	2
68	Detection Protocols for West Nile Virus in Mosquitoes, Birds, and Nonhuman Mammals. Methods in Molecular Biology, 2016, 1435, 175-206.	0.4	2
69	World Society for Virology first international conference: Tackling global virus epidemics. Virology, 2022, 566, 114-121.	1.1	2
70	Zika Virus: From Obscurity to Potentially Devastating International Threat. Clinical Chemistry, 2016, 62, 1175-1180.	1.5	0
71	Editorial overview. Current Opinion in Virology, 2017, 27, iv-v.	2.6	0
72	Answer to Paredes et al. commenting on "COVID-19 vaccines under the International Health Regulations — We must use the WHO International Certificate of Vaccination or Prophylaxis― International Journal of Infectious Diseases, 2021, 105, 409-410.	1.5	0