
Nuno M Reis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6561902/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective photocatalytic synthesis of benzaldehyde in microcapillaries with immobilized carbon nitride. Chemical Engineering Journal, 2022, 430, 132643.	6.6	13
2	Fast prototyping using 3D printed templates and flexible fluoropolymer microcapillary films offers enhanced micromixing in immobilised (bio)catalytic reactions. Chemical Engineering Journal, 2022, 429, 132266.	6.6	13
3	Label-free 1D microfluidic dipstick counting of microbial colonies and bacteriophage plaques. Lab on A Chip, 2022, 22, 2820-2831.	3.1	6
4	Microcapillary film reactor outperforms single-bore mesocapillary reactors in continuous flow chemical reactions. Chemical Engineering Journal, 2021, 408, 127860.	6.6	13
5	Point-of-need detection with smartphone. , 2021, , 311-362.		1
6	Antibody Surface Coverage Drives Matrix Interference in Microfluidic Capillary Immunoassays. ACS Sensors, 2021, 6, 2682-2690.	4.0	12
7	Modern microfluidic approaches for determination of ions. Microchemical Journal, 2021, 171, 106845.	2.3	14
8	Gravity-Driven Microfluidic Siphons: Fluidic Characterization and Application to Quantitative Immunoassays. ACS Sensors, 2021, 6, 4338-4348.	4.0	19
9	Siphon-Induced Droplet Break-Off for Enhanced Mixing on a Centrifugal Platform. Inventions, 2020, 5, 1.	1.3	15
10	Microfluidic smartphone quantitation of Escherichia coli in synthetic urine. Biosensors and Bioelectronics, 2019, 145, 111624.	5.3	43
11	Transparent, Hydrophobic Fluorinated Ethylene Propylene Offers Rapid, Robust, and Irreversible Passive Adsorption of Diagnostic Antibodies for Sensitive Optical Biosensing. ACS Applied Bio Materials, 2019, 2, 2780-2790.	2.3	12
12	lmmunocapture of Escherichia coli in a fluoropolymer microcapillary array. Journal of Chromatography A, 2019, 1585, 46-55.	1.8	10
13	Removal of antiretroviral drugs stavudine and zidovudine in water under UV254 and UV254/H2O2 processes: Quantum yields, kinetics and ecotoxicology assessment. Journal of Hazardous Materials, 2018, 349, 195-204.	6.5	33
14	Sensitive optical detection of clinically relevant biomarkers in affordable microfluidic devices: Overcoming substrate diffusion limitations. Sensors and Actuators B: Chemical, 2018, 258, 313-320.	4.0	18
15	A high-throughput multi-microfluidic crystal generator (MMicroCryGen) platform for facile screening of polymorphism and crystal morphology for pharmaceutical compounds. Lab on A Chip, 2018, 18, 2235-2245.	3.1	16
16	A critical insight into the development pipeline of microfluidic immunoassay devices for the sensitive quantitation of protein biomarkers at the point of care. Analyst, The, 2017, 142, 858-882.	1.7	72
17	Covalent immobilisation of antibodies in Teflon-FEP microfluidic devices for the sensitive quantification of clinically relevant protein biomarkers. Analyst, The, 2017, 142, 959-968.	1.7	33
18	Photodegradation and ecotoxicology of acyclovir in water under UV254 and UV254/H2O2 processes. Water Research, 2017, 122, 591-602.	5.3	50

NUNO M REIS

#	Article	IF	CITATIONS
19	Towards One-Step Quantitation of Prostate-Specific Antigen (PSA) in Microfluidic Devices: Feasibility of Optical Detection with Nanoparticle Labels. BioNanoScience, 2017, 7, 718-726.	1.5	24
20	Photo inactivation of virus particles in microfluidic capillary systems. Biotechnology and Bioengineering, 2016, 113, 1481-1492.	1.7	7
21	Removal of benzoylecgonine from water matrices through UV254/H2O2 process: Reaction kinetic modeling, ecotoxicity and genotoxicity assessment. Journal of Hazardous Materials, 2016, 318, 515-525.	6.5	29
22	Lab on a stick: multi-analyte cellular assays in a microfluidic dipstick. Lab on A Chip, 2016, 16, 2891-2899.	3.1	47
23	Investigation on the removal of the major cocaine metabolite (benzoylecgonine) in water matrices by UV 254 /H 2 O 2 process by using a flow microcapillary film array photoreactor as an efficient experimental tool. Water Research, 2016, 89, 375-383.	5.3	25
24	Direct photolysis of benzoylecgonine under UV irradiation at 254nm in a continuous flow microcapillary array photoreactor. Chemical Engineering Journal, 2016, 283, 243-250.	6.6	29
25	Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosensors and Bioelectronics, 2015, 70, 5-14.	5.3	203
26	A novel microfluidic approach for extremely fast and efficient photochemical transformations in fluoropolymer microcapillary films. Chemical Communications, 2015, 51, 8414-8417.	2.2	38
27	Multiplexed femtomolar quantitation of human cytokines in a fluoropolymer microcapillary film. Analyst, The, 2015, 140, 5609-5618.	1.7	36
28	CO ₂ Dissolution and Design Aspects of a Multiorifice Oscillatory Baffled Column. Industrial & Engineering Chemistry Research, 2014, 53, 17303-17316.	1.8	17
29	A lab-in-a-briefcase for rapid prostate specific antigen (PSA) screening from whole blood. Lab on A Chip, 2014, 14, 2918-2928.	3.1	57
30	Through-Wall Mass Transport as a Modality for Safe Generation of Singlet Oxygen in Continuous Flows. ACS Sustainable Chemistry and Engineering, 2013, 1, 209-213.	3.2	49
31	A simple device for multiplex ELISA made from melt-extruded plastic microcapillary film. Lab on A Chip, 2011, 11, 4267.	3.1	34
32	The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1127-1139.	2.5	7