List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6561597/publications.pdf Version: 2024-02-01

IANE FLITH

#	Article	IF	CITATIONS
1	Novel methods improve prediction of species' distributions from occurrence data. Ecography, 2006, 29, 129-151.	4.5	6,691
2	Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36, 27-46.	4.5	6,250
3	Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 677-697.	8.3	4,747
4	A working guide to boosted regression trees. Journal of Animal Ecology, 2008, 77, 802-813.	2.8	4,623
5	A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, 17, 43-57.	4.1	4,420
6	Sample selection bias and presenceâ€only distribution models: implications for background and pseudoâ€absence data. Ecological Applications, 2009, 19, 181-197.	3.8	2,121
7	The art of modelling range-shifting species. Methods in Ecology and Evolution, 2010, 1, 330-342.	5.2	1,945
8	Effects of sample size on the performance of species distribution models. Diversity and Distributions, 2008, 14, 763-773.	4.1	1,771
9	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
10	Crossâ€validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40, 913-929.	4.5	1,092
11	Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 2009, 32, 66-77.	4.5	844
12	Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 2007, 13, 252-264.	4.1	765
13	Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 2015, 24, 276-292.	5.8	661
14	Error and uncertainty in habitat models. Journal of Applied Ecology, 2006, 43, 413-423.	4.0	474
15	Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology - Progress Series, 2006, 321, 267-281.	1.9	465
16	Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 2007, 13, 332-340.	4.1	445
17	What do we gain from simplicity versus complexity in species distribution models?. Ecography, 2014, 37, 1267-1281.	4.5	438
18	Outstanding Challenges in the Transferability of Ecological Models. Trends in Ecology and Evolution, 2018, 33, 790-802.	8.7	403

#	Article	IF	CITATIONS
19	The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 2008, 45, 239-247.	4.0	401
20	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	4.5	397
21	Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 2006, 199, 188-196.	2.5	368
22	Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 2011, 20, 789-802.	5.8	355
23	Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods in Ecology and Evolution, 2015, 6, 424-438.	5.2	333
24	Point process models for presenceâ€only analysis. Methods in Ecology and Evolution, 2015, 6, 366-379.	5.2	319
25	<scp>block</scp> <scp>CV</scp> : An <scp>r</scp> package for generating spatially or environmentally separated folds for <i>k</i> â€fold crossâ€validation of species distribution models. Methods in Ecology and Evolution, 2019, 10, 225-232.	5.2	299
26	WHAT MATTERS FOR PREDICTING THE OCCURRENCES OF TREES: TECHNIQUES, DATA, OR SPECIES' CHARACTERISTICS?. Ecological Monographs, 2007, 77, 615-630.	5.4	293
27	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
28	Comparing species abundance models. Ecological Modelling, 2006, 199, 153-163.	2.5	289
29	A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions, 2019, 25, 839-852.	4.1	279
30	Using multivariate adaptive regression splines to predict the distributions of New Zealand's freshwater diadromous fish. Freshwater Biology, 2005, 50, 2034-2052.	2.4	273
31	Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Diversity and Distributions, 2007, 13, 265-275.	4.1	256
32	Fauna habitat modelling and mapping: A review and case study in the Lower Hunter Central Coast region of NSW. Austral Ecology, 2005, 30, 719-738.	1.5	248
33	Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biological Conservation, 2005, 122, 99-112.	4.1	246
34	Mapping epistemic uncertainties and vague concepts in predictions of species distribution. Ecological Modelling, 2002, 157, 313-329.	2.5	221
35	Building essential biodiversity variables (<scp>EBV</scp> s) of species distribution and abundance at a global scale. Biological Reviews, 2018, 93, 600-625.	10.4	218
36	Model averaging in ecology: a review of Bayesian, informationâ€ŧheoretic, and tactical approaches for predictive inference. Ecological Monographs, 2018, 88, 485-504.	5.4	209

#	Article	IF	CITATIONS
37	The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling, 2005, 186, 280-289.	2.5	202
38	Presenceâ€Only Data and the EM Algorithm. Biometrics, 2009, 65, 554-563.	1.4	201
39	Predictive performance of presenceâ€only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 2022, 92, e01486.	5.4	195
40	Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 2020, 43, 549-558.	4.5	186
41	A method for spatial freshwater conservation prioritization. Freshwater Biology, 2008, 53, 577-592.	2.4	184
42	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	9.5	182
43	Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 2008, 1, 91-102.	5.7	171
44	A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 2018, 208, 145-153.	11.0	163
45	Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. Journal of Animal Ecology, 2011, 80, 528-538.	2.8	159
46	Quantitative Methods for Modeling Species Habitat: Comparative Performance and an Application to Australian Plants. , 2000, , 39-58.		155
47	MANAGING LANDSCAPES FOR CONSERVATION UNDER UNCERTAINTY. Ecology, 2005, 86, 2007-2017.	3.2	152
48	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	6.4	144
49	Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. Diversity and Distributions, 2012, 18, 628-634.	4.1	136
50	POC plots: calibrating species distribution models with presenceâ€only data. Ecology, 2010, 91, 2476-2484.	3.2	133
51	Dispersal, disturbance and the contrasting biogeographies of New Zealand's diadromous and nonâ€diadromous fish species. Journal of Biogeography, 2008, 35, 1481-1497.	3.0	123
52	On estimating probability of presence from use–availability or presence–background data. Ecology, 2013, 94, 1409-1419.	3.2	122
53	Maxent is not a presence–absence method: a comment on Thibaud <i>etÂal</i> Methods in Ecology and Evolution, 2014, 5, 1192-1197.	5.2	113
54	Assessing the impacts of climate change and land transformation on <i>Banksia</i> in the South West Australian Eloristic Region, Diversity and Distributions, 2010, 16, 187-201	4.1	98

#	Article	IF	CITATIONS
55	Eliciting and integrating expert knowledge for wildlife habitat modelling. Ecological Modelling, 2003, 165, 251-264.	2.5	96
56	Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 2006, 199, 115-124.	2.5	95
57	Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications. Freshwater Biology, 2011, 56, 21-38.	2.4	88
58	Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. Environmental Management, 2016, 57, 251-256.	2.7	88
59	Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: Opportunities and challenges. Austral Ecology, 2010, 35, 374-391.	1.5	86
60	Evaluating 318 continentalâ€scale species distribution models over a 60â€year prediction horizon: what factors influence the reliability of predictions?. Global Ecology and Biogeography, 2017, 26, 371-384.	5.8	81
61	Uncertainty Analysis for Regional-Scale Reserve Selection. Conservation Biology, 2006, 20, 1688-1697.	4.7	78
62	Detecting Extinction Risk from Climate Change by IUCN Red List Criteria. Conservation Biology, 2014, 28, 810-819.	4.7	77
63	Modelling species presenceâ€only data with random forests. Ecography, 2021, 44, 1731-1742.	4.5	77
64	Species Distribution Modeling. , 2013, , 692-705.		73
65	Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite, <i>Halotydeus destructor</i> . Diversity and Distributions, 2012, 18, 191-203.	4.1	54
66	Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. Journal of Vegetation Science, 2011, 22, 905-916.	2.2	52
67	Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods in Ecology and Evolution, 2018, 9, 2249-2261.	5.2	52
68	Alien invaders and reptile traders: what drives the live animal trade in South Africa?. Animal Conservation, 2010, 13, 24-32.	2.9	47
69	Biological soil crust distribution is related to patterns of fragmentation and landuse in a dryland agricultural landscape of southern Australia. Landscape Ecology, 2008, 23, 1093-1105.	4.2	44
70	Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub formations in the Cantabrian Mountains (NW Spain). Diversity and Distributions, 2012, 18, 588-602.	4.1	43
71	Taxonomic uncertainty and decision making for biosecurity: spatial models for myrtle/guava rust. Australasian Plant Pathology, 2013, 42, 43-51.	1.0	40
72	Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods. Biodiversity Informatics, 2020, 15, 69-80.	3.0	38

#	Article	IF	CITATIONS
73	Predicting distribution changes of a mire ecosystem under future climates. Diversity and Distributions, 2014, 20, 440-454.	4.1	34
74	Predicting Distributions of Invasive Species. , 2017, , 93-129.		33
75	Using Species Distribution Models For Fungi. Fungal Biology Reviews, 2020, 34, 74-88.	4.7	31
76	How decisions about fitting species distribution models affect conservation outcomes. Conservation Biology, 2021, 35, 1309-1320.	4.7	30
77	Spatial data for modelling and management of freshwater ecosystems. International Journal of Geographical Information Science, 2012, 26, 2123-2140.	4.8	19
78	Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.	4.1	19
79	Biocrust morphogroups provide an effective and rapid assessment tool for drylands. Journal of Applied Ecology, 2014, 51, 1740-1749.	4.0	18
80	Can dynamic occupancy models improve predictions of species' range dynamics? A test using Swiss birds. Global Change Biology, 2021, 27, 4269-4282.	9.5	18
81	Testing a model of biological soil crust succession. Journal of Vegetation Science, 2016, 27, 176-186.	2.2	17
82	The influence of data source and species distribution modelling method on spatial conservation priorities. Diversity and Distributions, 2019, 25, 1060-1073.	4.1	17
83	Improving decisions for invasive species management: reformulation and extensions of the <scp>P</scp> anetta– <scp>L</scp> awes eradication graph. Diversity and Distributions, 2013, 19, 603-607.	4.1	16
84	Interactive effects of climate change and fire on metapopulation viability of a forest-dependent frog in south-eastern Australia. Biological Conservation, 2015, 190, 142-153.	4.1	11
85	Robust planning for restoring diadromous fish species in New Zealand's lowland rivers and streams. New Zealand Journal of Marine and Freshwater Research, 2009, 43, 659-671.	2.0	10
86	Enhancing repository fungal data for biogeographic analyses. Fungal Ecology, 2021, 53, 101097.	1.6	5
87	Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. , 2016, 57, 251.		1
88	Response to Kriticos et al NeoBiota, 0, 23, 95-99.	1.0	0