Jane Elith

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/6561597/publications.pdf
Version: 2024-02-01

1	Novel methods improve prediction of speciesâ ϵ^{TM} distributions from occurrence data. Ecography, 2006, 29, 129-151.	4.5	6,691
2	Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 2013, 36, 27-46.	4.5	6,250
3	Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 2009, 40, 677-697.	8.3	4,747
4	A working guide to boosted regression trees. Journal of Animal Ecology, 2008, 77, 802-813.	2.8	4,623
5	A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 2011, 17, 43-57.	4.1	4,420
6	Sample selection bias and presenceâ€only distribution models: implications for background and pseudoâ€absence data. Ecological Applications, 2009, 19, 181-197.	3.8	2,121
7	The art of modelling range-shifting species. Methods in Ecology and Evolution, 2010, 1, 330-342.	5.2	1,945

Effects of sample size on the performance of species distribution models. Diversity and Distributions,
$2008,14,763-773$.

9	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	6.4	1,375
10	Crossâ€validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography, 2017, 40, 913-929.	4.5	1,092
11	Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography, 2009, 32, 66-77.	4.5	844

12 Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions, 2007, 13, 252-264.
4.1

765
13 Is my species distribution model fit for purpose? Matching data and models to applications. Global
Ecology and Biogeography, 2015, 24, 276-292.
5.8

661

14 Error and uncertainty in habitat models. Journal of Applied Ecology, 2006, 43, 413-423.
4.0

474

15 Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using
boosted regression trees. Marine Ecology - Progress Series, 2006, 321, 267-281.
1.9

465

Sensitivity of predictive species distribution models to change in grain size. Diversity and
Distributions, 2007, 13, 332-340.
4.1

445

17 What do we gain from simplicity versus complexity in species distribution models?. Ecography, 2014, 37,
1267-1281.
4.5

438
19 The influence of spatial errors in species occurrence data used in distribution models. Journal of
Applied Ecology, 2008, 45, 239-247.
4.0

21	Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 2006, 199, 188-196.	2.5	368
22	Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography, 2011, 20, 789-802.	5.8	355
23	Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods in Ecology and Evolution, 2015, 6, 424-438.	5.2	333
24	Point process models for presenceâ€only analysis. Methods in Ecology and Evolution, 2015, 6, 366-379.	5.2	319
25	<scp>block</scp> <scp>CV</scp>: An <scp>r</scp> package for generating spatially or environmentally separated folds for <i>k<\|i>â€fold crossâ€validation of species distribution models. Methods in Ecology and Evolution, 2019, 10, 225-232.	5.2	299

WHAT MATTERS FOR PREDICTING THE OCCURRENCES OF TREES: TECHNIQUES, DATA, OR SPECIES' CHARACTERISTICS?. Ecological Monographs, 2007, 77, 615-630.
29 A review of evidence about use and performance of species distribution modelling ensembles likeBIOMOD. Diversity and Distributions, 2019, 25, 839-852.
$4.1 \quad 279$$30 \quad$ Using multivariate adaptive regression splines to predict the distributio2.4

\#	Article	IF	Citations
37	The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling, 2005, 186, 280-289.	2.5	202
38	Presenceâ€Only Data and the EM Algorithm. Biometrics, 2009, 65, 554-563.	1.4	201
39	Predictive performance of presenceâ€only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 2022, 92, e01486.	5.4	195
40	Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography, 2020, 43, 549-558.	4.5	186
41	A method for spatial freshwater conservation prioritization. Freshwater Biology, 2008, 53, 577-592.	2.4	184
42	Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?. Global Change Biology, 2012, 18, 1357-1371.	9.5	182
43	Novel methods for the design and evaluation of marine protected areas in offshore waters. Conservation Letters, 2008, 1, 91-102.	5.7	171
44	A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment, 2018, 208, 145-153.	11.0	163
45	Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. Journal of Animal Ecology, 2011, 80, 528-538.	2.8	159
46	Quantitative Methods for Modeling Species Habitat: Comparative Performance and an Application to Australian Plants. , 2000, , 39-58.		155
47	MANAGING LANDSCAPES FOR CONSERVATION UNDER UNCERTAINTY. Ecology, 2005, 86, 2007-2017.	3.2	152
48	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	6.4	144
49	Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. Diversity and Distributions, 2012, 18, 628-634.	4.1	136

$50 \quad$ POC plots: calibrating species distribution models with presenceâ€only data. Ecology, 2010, 91, 2476-2484. 3.2133
Dispersal, disturbance and the contrasting biogeographies of New Zealandâ€ ${ }^{\text {TM }}$ S diadromous and
nonâ€diadromous fish species. Journal of Biogeography, 2008, 35, 1481-1497.

On estimating probability of presence from useâ€"availability or presenceâe"background data. Ecology,
55 Eliciting and integrating expert knowledge for wildlife habitat modelling. Ecological Modelling, 2003,
165, 251-264.

Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 2006, 199,
115-124.
2.5

95

57	Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications. Freshwater Biology, 2011, 56, 21-38.
58	Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services. Environmental Management, 2016, 57, 251-256.
59	Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: Opportunities and challenges. Austral Ecology, 2010, 35,

Detecting Extinction Risk from Climate Change by IUCN Red List Criteria. Conservation Biology, 2014, 28, 810-819.
4.7

77

63 Modelling species presenceâ€only data with random forests. Ecography, 2021, 44, 1731-1742.
4.5

77

64 Species Distribution Modeling. , 2013, , 692-705.

Surprisingly fast recovery of biological soil crusts following livestock removal in southern
66 Australia. Journal of Vegetation Science, 2011, 22, 905-916.
2.2

52

Not all data are equal: Influence of data type and amount in spatial conservation prioritisation.
67 Methods in Ecology and Evolution, 2018, 9, 2249-2261.
Alien invaders and reptile traders: what drives the live animal trade in South Africa?. Animal
Conservation, 2010, 13, 24-32.
2.9

47

Biological soil crust distribution is related to patterns of fragmentation and landuse in a dryland
agricultural landscape of southern Australia. Landscape Ecology, 2008, 23, 1093-1105.
4.2

44

Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub
formations in the Cantabrian Mountains (NW Spain). Diversity and Distributions, 2012, 18, 588-602.
4.1

43

Taxonomic uncertainty and decision making for biosecurity: spatial models for myrtle/guava rust.
Australasian Plant Pathology, 2013, 42, 43-51.

Predicting distribution changes of a mire ecosystem under future climates. Diversity and
Distributions, 2014, 20, 440-454.

74 Predicting Distributions of Invasive Species. , 2017, , 93-129.

Spatial data for modelling and management of freshwater ecosystems. International Journal of
Geographical Information Science, 2012, 26, 2123-2140.
$4.8 \quad 19$

Open access solutions for biodiversity journals: Do not replace one problem with another. Diversity and Distributions, 2019, 25, 5-8.

Biocrust morphogroups provide an effective and rapid assessment tool for drylands. Journal of
Applied Ecology, 2014, 51, 1740-1749.

Can dynamic occupancy models improve predictions of species' range dynamics? A test using Swiss
birds. Global Change Biology, 2021, 27, 4269-4282.

81 Testing a model of biological soil crust succession. Journal of Vegetation Science, 2016, 27, 176-186.
2.2

17
4.1

17
The influence of data source and species distribution modelling method on spatial conservation priorities. Diversity and Distributions, 2019, 25, 1060-1073.

Improving decisions for invasive species management: reformulation and extensions of the
$83 \quad$ <scp $>P</ s c p>$ anettaâ $€^{\prime \prime}<s c p>L</ s c p>a w e s$ eradication graph. Diversity and Distributions, 2013, 19, 603-607.
4.1

16

Interactive effects of climate change and fire on metapopulation viability of a forest-dependent frog in south-eastern Australia. Biological Conservation, 2015, 190, 142-153.

Robust planning for restoring diadromous fish species in New Zealand's lowland rivers and streams.
New Zealand Journal of Marine and Freshwater Research, 2009, 43, 659-671.

Enhancing repository fungal data for biogeographic analyses. Fungal Ecology, 2021, 53, 101097.
1.6

5

[^0]
[^0]: Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of
 Biodiversity Features and Ecosystem Services. , 2016, 57, 251.

