
Melanie Kah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6561547/publications.pdf Version: 2024-02-01

MELANIE KAH

#	Article	IF	CITATIONS
1	A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nature Nanotechnology, 2018, 13, 677-684.	31.5	685
2	Nanopesticide research: Current trends and future priorities. Environment International, 2014, 63, 224-235.	10.0	582
3	Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology, 2019, 14, 532-540.	31.5	551
4	Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Critical Reviews in Environmental Science and Technology, 2013, 43, 1823-1867.	12.8	416
5	Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials. Water Research, 2017, 124, 673-692.	11.3	312
6	Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. Journal of Agricultural and Food Chemistry, 2014, 62, 4227-4240.	5.2	308
7	Nanopesticides and Nanofertilizers: Emerging Contaminants or Opportunities for Risk Mitigation?. Frontiers in Chemistry, 2015, 3, 64.	3.6	274
8	A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Research, 2021, 199, 117187.	11.3	233
9	Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils – To mobilize or to immobilize or to degrade?. Journal of Hazardous Materials, 2021, 401, 123892.	12.4	169
10	LogD: Lipophilicity for ionisable compounds. Chemosphere, 2008, 72, 1401-1408.	8.2	163
11	Factors Influencing Degradation of Pesticides in Soil. Journal of Agricultural and Food Chemistry, 2007, 55, 4487-4492.	5.2	147
12	Measuring and Modeling Adsorption of PAHs to Carbon Nanotubes Over a Six Order of Magnitude Wide Concentration Range. Environmental Science & Technology, 2011, 45, 6011-6017.	10.0	107
13	Biochar total surface area and total pore volume determined by N2 and CO2 physisorption are strongly influenced by degassing temperature. Science of the Total Environment, 2017, 580, 770-775.	8.0	107
14	Ecological Risk Assessment of Nano-enabled Pesticides: A Perspective on Problem Formulation. Journal of Agricultural and Food Chemistry, 2018, 66, 6480-6486.	5.2	106
15	Prediction of the Adsorption of Ionizable Pesticides in Soils. Journal of Agricultural and Food Chemistry, 2007, 55, 2312-2322.	5.2	103
16	Adsorption of Ionisable Pesticides in Soils. Reviews of Environmental Contamination and Toxicology, 2006, 188, 149-217.	1.3	96
17	Impacts of (Nano)formulations on the Fate of an Insecticide in Soil and Consequences for Environmental Exposure Assessment. Environmental Science & Technology, 2016, 50, 10960-10967.	10.0	84
18	Environmental fate of nanopesticides: durability, sorption and photodegradation of nanoformulated clothianidin. Environmental Science: Nano, 2018, 5, 882-889.	4.3	79

Melanie Kah

#	Article	lF	CITATIONS
19	Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils. Journal of Hazardous Materials, 2018, 345, 107-113.	12.4	71
20	Adsorption and degradation of four acidic herbicides in soils from southern Spain. Pest Management Science, 2008, 64, 703-710.	3.4	62
21	Dispersion State and Humic Acids Concentration-Dependent Sorption of Pyrene to Carbon Nanotubes. Environmental Science & Technology, 2012, 46, 7166-7173.	10.0	61
22	Analysing the fate of nanopesticides in soil and the applicability of regulatory protocols using a polymer-based nanoformulation of atrazine. Environmental Science and Pollution Research, 2014, 21, 11699-11707.	5.3	53
23	Are Nanoparticles a Threat to Mycorrhizal and Rhizobial Symbioses? A Critical Review. Frontiers in Microbiology, 2019, 10, 1660.	3.5	53
24	Nanopesticides: A Comprehensive Assessment of Environmental Risk Is Needed before Widespread Agricultural Application. Environmental Science & Technology, 2019, 53, 7923-7924.	10.0	51
25	Comprehensive framework for human health risk assessment of nanopesticides. Nature Nanotechnology, 2021, 16, 955-964.	31.5	48
26	How Redox Conditions and Irradiation Affect Sorption of PAHs by Dispersed Fullerenes (nC60). Environmental Science & Technology, 2013, 47, 6935-6942.	10.0	45
27	Predicting the Sorption of Aromatic Acids to Noncarbonized and Carbonized Sorbents. Environmental Science & Technology, 2016, 50, 3641-3648.	10.0	44
28	Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere, 2007, 68, 1335-1343.	8.2	42
29	International Analysis of Sources and Human Health Risk Associated with Trace Metal Contaminants in Residential Indoor Dust. Environmental Science & Technology, 2022, 56, 1053-1068.	10.0	40
30	Bioavailability and toxicity of pyrene in soils upon biochar and compost addition. Science of the Total Environment, 2017, 595, 132-140.	8.0	39
31	Sequestration and potential release of PFAS from spent engineered sorbents. Science of the Total Environment, 2021, 765, 142770.	8.0	38
32	Impact of (nano)formulations on the distribution and wash-off of copper pesticides and fertilisers applied on citrus leaves. Environmental Chemistry, 2019, 16, 401.	1.5	37
33	Potential for Effects of Land Contamination on Human Health. 1. The Case of Cadmium. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2012, 15, 348-363.	6.5	36
34	Environmental risks and the potential benefits ofÂnanopesticides:Âa review. Environmental Chemistry Letters, 2022, 20, 2097-2108.	16.2	31
35	Effect of ageing on the properties and polycyclic aromatic hydrocarbon composition of biochar. Environmental Sciences: Processes and Impacts, 2017, 19, 768-774.	3.5	29
36	Assessing the Impacts of Cu(OH) ₂ Nanopesticide and Ionic Copper on the Soil Enzyme Activity and Bacterial Community. Journal of Agricultural and Food Chemistry, 2020, 68, 3372-3381.	5.2	29

Melanie Kah

#	Article	IF	CITATIONS
37	Nanoformulations can significantly affect pesticide degradation and uptake by earthworms and plants. Environmental Chemistry, 2019, 16, 470.	1.5	27
38	Sorption behavior of carbon nanotubes: Changes induced by functionalization, sonication and natural organic matter. Science of the Total Environment, 2014, 497-498, 133-138.	8.0	25
39	Pyrolysis of waste materials: Characterization and prediction of sorption potential across a wide range of mineral contents and pyrolysis temperatures. Bioresource Technology, 2016, 214, 225-233.	9.6	25
40	Copper toxicity to Folsomia candida in different soils: a comparison between nano and conventional formulations. Environmental Chemistry, 2019, 16, 419.	1.5	22
41	Contribution of household herbicide usage to glyphosate and its degradate aminomethylphosphonic acid in surface water drains. Pest Management Science, 2014, 70, 1823-1830.	3.4	21
42	Interactions between aromatic hydrocarbons and functionalized C ₆₀ fullerenes – insights from experimental data and molecular modelling. Environmental Science: Nano, 2017, 4, 1045-1053.	4.3	17
43	Mineralisation and release of 14C-graphene oxide (GO) in soils. Chemosphere, 2020, 238, 124558.	8.2	15
44	Emerging investigator series: nanotechnology to develop novel agrochemicals: critical issues to consider in the global agricultural context. Environmental Science: Nano, 2020, 7, 1867-1873.	4.3	15
45	Fate of Biodegradable Engineered Nanoparticles Used in Veterinary Medicine as Delivery Systems from a One Health Perspective. Molecules, 2021, 26, 523.	3.8	14
46	Modeling Subsurface Fate of <i>S</i> â€Metolachlor and Metolachlor Ethane Sulfonic Acid in the Westliches Leibnitzer Feld Aquifer. Vadose Zone Journal, 2018, 17, 1-12.	2.2	13
47	Potential for Effects of Land Contamination on Human Health. 2. The Case of Waste Disposal Sites. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2012, 15, 441-467.	6.5	12
48	Transformations of Ag2S nanoparticles in simulated human gastrointestinal tract: Impacts of the degree and origin of sulfidation. Journal of Hazardous Materials, 2021, 401, 123406.	12.4	12
49	Response of soil enzyme activity and bacterial community to copper hydroxide nanofertilizer and its ionic analogue under single versus repeated applications. Science of the Total Environment, 2021, 796, 148974.	8.0	12
50	The Challenge: Carbon nanomaterials in the environment: New threats or wonder materials?. Environmental Toxicology and Chemistry, 2015, 34, 954-954.	4.3	11
51	Sorption to soil, biochar and compost: is prediction to multicomponent mixtures possible based on single sorbent measurements?. PeerJ, 2018, 6, e4996.	2.0	11
52	Sensitivity analysis for the SimpleTreat model to simulate fate of chemicals in sewage treatment plants. Water Science and Technology, 2011, 63, 2052-2060.	2.5	5
53	ls centrifugal ultrafiltration a robust method for determining encapsulation efficiency of pesticide nanoformulations?. Nanoscale, 2021, 13, 5410-5418.	5.6	5
54	Hopeful approaches to teaching and learning environmental "wicked problemsâ€: Journal of Geography in Higher Education, 2021, 45, 621-639.	2.6	3

#	Article	IF	CITATIONS
55	Fate of copper in soil: effect of agrochemical (nano)formulations and soil properties. Environmental Science: Nano, 0, , .	4.3	2
56	Tebuconazole and terbuthylazine encapsulated in nanocarriers: preparation, characterization and release kinetics. Environmental Science: Nano, 0, , .	4.3	2