Jiang-Jen Lin

List of Publications by Citations

Source: https://exaly.com/author-pdf/6561072/jiang-jen-lin-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

196 papers

4,840 citations

38 h-index 58 g-index

2O2 ext. papers

5,173 ext. citations

avg, IF

5.5 L-index

#	Paper	IF	Citations
196	The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. <i>Biomaterials</i> , 2009 , 30, 5979-87	15.6	385
195	Intercalation strategies in clay/polymer hybrids. <i>Progress in Polymer Science</i> , 2014 , 39, 443-485	29.6	210
194	A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4067		127
193	Flame retardant epoxy polymers based on all phosphorus-containing components. <i>European Polymer Journal</i> , 2002 , 38, 683-693	5.2	108
192	Tailoring Basal Spacings of Montmorillonite by Poly(oxyalkylene)diamine Intercalation. <i>Macromolecules</i> , 2001 , 34, 8832-8834	5.5	103
191	Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. <i>ACS Applied Materials & Discrete Materials & Discrete</i>	9.5	97
190	Self-assembly behavior of polymer-assisted clays. <i>Progress in Polymer Science</i> , 2012 , 37, 406-444	29.6	96
189	Concentration effect of carbon nanotube based saturable absorber on stabilizing and shortening mode-locked pulse. <i>Optics Express</i> , 2010 , 18, 3592-600	3.3	73
188	Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. <i>ACS Applied Materials & Samp; Interfaces</i> , 2013 , 5, 433-43	9.5	72
187	A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8471	13	71
186	First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 18115-20	3.4	69
185	Highly transparent and flexible polyimideAgNW hybrid electrodes with excellent thermal stability for electrochromic applications and defogging devices. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3629-3	3 <i>6</i> 3 ¹ 5	64
184	Amphiphilic properties of poly(oxyalkylene)amine-intercalated smectite aluminosilicates. <i>Langmuir</i> , 2004 , 20, 4261-4	4	64
183	Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. <i>Applied Clay Science</i> , 2012 , 56, 53-62	5.2	62
182	The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. <i>Nanotechnology</i> , 2012 , 23, 065102	3.4	61
181	Observation of carbon nanotube and clay micellelike microstructures with dual dispersion property. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 8654-9	2.8	57
180	Preparation of protein-silicate hybrids from polyamine intercalation of layered montmorillonite. <i>Langmuir</i> , 2007 , 23, 1995-9	4	56

(2012-2005)

179	Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. <i>Macromolecules</i> , 2005 , 38, 6240-6243	5.5	55	
178	Novel nanohybrids of silver particles on clay platelets for inhibiting silver-resistant bacteria. <i>PLoS ONE</i> , 2011 , 6, e21125	3.7	54	
177	Dye-sensitized solar cells with reduced graphene oxide as the counter electrode prepared by a green photothermal reduction process. <i>ChemPhysChem</i> , 2014 , 15, 1175-81	3.2	53	
176	Self-Assembled Superstructures of Polymer-Grafted Nanoparticles: Effects of Particle Shape and Matrix Polymer. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5566-5577	3.8	53	
175	Preparation, Organophilicity, and Self-Assembly of Poly(oxypropylene)amine lay Hybrids. <i>Macromolecules</i> , 2003 , 36, 2187-2189	5.5	53	
174	Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. Journal of Materials Chemistry, 2012 , 22, 6982		52	
173	Characterization, antimicrobial activities, and biocompatibility of organically modified clays and their nanocomposites with polyurethane. <i>ACS Applied Materials & Description</i> , 2012, 4, 338-50	9.5	50	
172	Comparisons of Physical Properties of Intercalated and Exfoliated Clay/Epoxy Nanocomposites. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 2086-2090	3.9	50	
171	Novel polymer gel electrolyte with organic solvents for quasi-solid-state dye-sensitized solar cells. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	47	
170	Nanohybrids of magnetic iron-oxide particles in hydrophobic organoclays for oil recovery. <i>ACS Applied Materials & Discourse amp; Interfaces</i> , 2010 , 2, 1349-54	9.5	47	
169	Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: Heteroatom doping level effect on tri-iodide reduction reaction. <i>Journal of Power Sources</i> , 2018 , 375, 29-36	8.9	46	
168	Efficient titanium nitride/titanium oxide composite photoanodes for dye-sensitized solar cells and water splitting. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 4695-4705	13	45	
167	Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. <i>Solar Energy Materials and Solar Cells</i> , 2009 , 93, 1860-1864	6.4	44	
166	Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gel electrolytes?. <i>Solar Energy Materials and Solar Cells</i> , 2010 , 94, 668-674	6.4	44	
165	Facile fabrication of robust superhydrophobic epoxy film with polyamine dispersed carbon nanotubes. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 538-45	9.5	43	
164	Preparation of clay/epoxy nanocomposites by layered-double-hydroxide initiated self-polymerization. <i>Polymer</i> , 2008 , 49, 4796-4801	3.9	43	
163	Critical Conformational Change of Poly(oxypropylene)diamines in Layered Aluminosilicate Confinement. <i>Macromolecular Rapid Communications</i> , 2003 , 24, 492-495	4.8	42	
162	Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3185		40	

161	Morphological Influence of Polypyrrole Nanoparticles on the Performance of DyeBensitized Solar Cells. <i>Electrochimica Acta</i> , 2015 , 155, 263-271	6.7	39
160	Preparation of high energy fuel JP-10 by acidity-adjustable chloroaluminate ionic liquid catalyst. <i>Fuel</i> , 2011 , 90, 1012-1017	7.1	39
159	Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2184		39
158	Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites. <i>Materials</i> , 2010 , 3, 2588-2605	3.5	37
157	Flame retardant epoxy polymers using phosphorus-containing polyalkylene amines as curing agents. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 3526-3538	2.9	35
156	Multifunctional Iodide-Free Polymeric Ionic Liquid for Quasi-Solid-State Dye-Sensitized Solar Cells with a High Open-Circuit Voltage. <i>ACS Applied Materials & Discrete Solar Cells</i> 8, 15267-78	9.5	34
155	Conformational Change of Trifunctional Poly(oxypropylene)amines Intercalated within a Layered Silicate Confinement. <i>Macromolecules</i> , 2004 , 37, 473-477	5.5	34
154	Flexible, optically transparent, high refractive, and thermally stable polyimideIIiO2 hybrids for anti-reflection coating. <i>RSC Advances</i> , 2013 , 3, 17048	3.7	33
153	One-Step Exfoliation of Montmorillonite via Phase Inversion of Amphiphilic Copolymer Emulsion. <i>Macromolecules</i> , 2005 , 38, 230-233	5.5	33
152	Intercalation of layered double hydroxides by poly(oxyalkylene)-amidocarboxylates: tailoring layered basal spacing. <i>Polymer</i> , 2004 , 45, 7887-7893	3.9	33
151	High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: The role of annealing. <i>Journal of Power Sources</i> , 2012 , 203, 274-281	8.9	32
150	Self-doping effects on the morphology, electrochemical and conductivity properties of self-assembled polyanilines. <i>Thin Solid Films</i> , 2008 , 517, 500-505	2.2	32
149	Clay-mediated synthesis of silver nanoparticles exhibiting low-temperature melting. <i>Langmuir</i> , 2011 , 27, 11690-6	4	31
148	Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. <i>European Polymer Journal</i> , 2008 , 44, 628-636	5.2	31
147	Thermally Stable Boron-Doped Multiwalled Carbon Nanotubes as a Pt-free Counter Electrode for Dye-Sensitized Solar Cells. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 537-546	8.3	30
146	Controlling formation of silver/carbon nanotube networks for highly conductive film surface. <i>ACS Applied Materials & Discours (Materials & Discours)</i> Applied Materials & Discourse (Materials & Discourse) Applied & Discourse (Materials & Discourse (Materials & Discourse) Applied & Discourse (Materials & Discours	9.5	30
145	Isomerization of endo-tetrahydrodicyclopentadiene over clay-supported chloroaluminate ionic liquid catalysts. <i>Journal of Molecular Catalysis A</i> , 2010 , 315, 69-75		30
144	Gelation of ionic liquid with exfoliated montmorillonite nanoplatelets and its application for quasi-solid-state dye-sensitized solar cells. <i>Journal of Colloid and Interface Science</i> , 2011 , 363, 635-9	9.3	29

(2000-2013)

143	Dye-sensitized solar cells with low-cost catalytic films of polymer-loaded carbon black on their counter electrode. <i>RSC Advances</i> , 2013 , 3, 5871	3.7	28
142	Antimicrobial activities and cellular responses to natural silicate clays and derivatives modified by cationic alkylamine salts. <i>ACS Applied Materials & Discreta (1988)</i> , 1, 2556-64	9.5	28
141	Functionalizing multi-walled carbon nanotubes with poly(oxyalkylene)-amidoamines. <i>Nanotechnology</i> , 2006 , 17, 3197-3203	3.4	28
140	Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20814-20822	13	27
139	Transparent grapheneplatinum nanohybrid films for counter electrodes in high efficiency dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8742	13	27
138	A dual-functional Pt/CNT TCO-free counter electrode for dye-sensitized solar cell. <i>Journal of Materials Chemistry</i> , 2012 , 22, 25311		27
137	Organo-clay hybrids based on dendritic molecules: preparation and characterization. <i>Nanotechnology</i> , 2007 , 18, 205606	3.4	27
136	Unusual Intercalation of Cationic Smectite Clays with Detergent-Ranged Carboxylic Ions. <i>Macromolecular Rapid Communications</i> , 2005 , 26, 1841-1845	4.8	27
135	Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. Journal of Virology, 2014 , 88, 4218-28	6.6	26
134	Label-free and culture-free microbe detection by three dimensional hot-junctions of flexible Raman-enhancing nanohybrid platelets. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 1136-1143	7.3	26
133	Novel solution-processable fluorene-based polyimide/TiO2 hybrids with tunable memory properties. <i>Polymer Chemistry</i> , 2013 , 4, 4570	4.9	26
132	Pulse shortening mode-locked fiber laser by thickness and concentration product of carbon nanotube based saturable absorber. <i>Optics Express</i> , 2011 , 19, 4036-41	3.3	25
131	Clay-assisted dispersion of organic pigments in water. <i>Dyes and Pigments</i> , 2011 , 90, 21-27	4.6	25
130	Mechanistic Aspects of Clay Intercalation with Amphiphilic Poly(styrene-co-maleic anhydride)-Grafting Polyamine Salts. <i>Macromolecules</i> , 2007 , 40, 1579-1584	5.5	25
129	Selective SERS detecting of hydrophobic microorganisms by tricomponent nanohybrids of silver-silicate-platelet-surfactant. <i>ACS Applied Materials & Applied Materials </i>	9.5	24
128	Enhanced performance of a dye-sensitized solar cell with an amphiphilic polymer-gelled ionic liquid electrolyte. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 3055	13	24
127	Novel Mechanism for Layered Silicate Clay Intercalation by Poly(propylene oxide)-Segmented Carboxylic Acid. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 508-512	4.8	24
126	Synthesis and epoxy curing of Mannich bases derived from bisphenol A and poly(oxyalkylene)diamine. <i>Journal of Applied Polymer Science</i> , 2000 , 78, 615-623	2.9	24

125	High Compatibility of the Poly(oxypropylene)amine-Intercalated Montmorillonite for Epoxy. <i>Polymer Journal</i> , 2003 , 35, 411-416	2.7	23
124	Synthesis, Characterization, and Interfacial Behaviors of Poly(oxyethylene)-Grafted SEBS Copolymers. <i>Industrial & Description of Poly(oxyethylene)</i> , 39, 65-71	3.9	23
123	Hydrogen-bond driven intercalation of synthetic fluorinated mica by poly(oxypropylene)-amidoamine salts. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 302, 162-167	5.1	22
122	Inhibition of Bacterial Growth by the Exfoliated Clays and Observation of Physical Capturing Mechanism. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 18770-18775	3.8	21
121	Optical Non-Linearity from Montmorillonite Intercalated with a Chromophore-Containing Dendritic Structure: A Self-Assembly Approach. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 587-592	4.8	21
120	Kinetics of styrene emulsion polymerization in the presence of montmorillonite. <i>European Polymer Journal</i> , 2006 , 42, 1033-1042	5.2	21
119	Isomerization of exo-tetrahydrodicyclopentadiene to adamantane using an acidity-adjustable chloroaluminate ionic liquid. <i>Catalysis Communications</i> , 2009 , 10, 1747-1751	3.2	20
118	Layered inorganic/enzyme nanohybrids with selectivity and structural stability upon interacting with biomolecules. <i>Bioconjugate Chemistry</i> , 2008 , 19, 138-44	6.3	20
117	N-Aryl Acylureas as Intermediates in Sequential Self-Repetitive Reactions To Form Poly(amidelimide)s. <i>Macromolecules</i> , 2006 , 39, 12-14	5.5	20
116	Preparation and epoxy curing of novel dicyclopentadiene-derived Mannich amines. <i>Journal of Applied Polymer Science</i> , 1999 , 71, 2129-2139	2.9	20
115	Nanohybrids of silver particles immobilized on silicate platelet for infected wound healing. <i>PLoS ONE</i> , 2012 , 7, e38360	3.7	19
114	Clay as a dispersion agent in anode catalyst layer for PEMFC. <i>Journal of Power Sources</i> , 2006 , 163, 398-4	402 9	19
113	First Observation of Physically Capturing and Maneuvering Bacteria using Magnetic Clays. <i>ACS Applied Materials & District Management (1988) and Maneuvering Bacteria using Magnetic Clays. <i>ACS Applied Materials & District Materials & Distri</i></i>	9.5	18
112	Control of morphology and size of platinum crystals through amphiphilic polymer-assisted microemulsions and their uses in dye-sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 123	305	18
111	First fabrication of electrowetting display by using pigment-in-oil driving pixels. <i>ACS Applied Materials & ACS Applied & ACS App</i>	9.5	18
110	Emulsion intercalation of smectite clays with comb-branched copolymers consisting of multiple quaternary amine salts and a poly(styrene-butadiene-styrene) backbone. <i>Langmuir</i> , 2005 , 21, 7023-8	4	18
109	Lengthy Rod Formation from a Poly(oxyalkylene)amine-Intercalated Smectite Clay by a Self-Aligning Mechanism. <i>Macromolecular Rapid Communications</i> , 2004 , 25, 1109-1112	4.8	18
108	Thermo-responsive nanoarrays of silver nanoparticle, silicate nanoplatelet and PNiPAAm for the antimicrobial applications. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 152, 459-466	6	17

107	Efficacy and safety of nanohybrids comprising silver nanoparticles and silicate clay for controlling Salmonella infection. <i>International Journal of Nanomedicine</i> , 2012 , 7, 2421-32	7.3	17	
106	Synthesis of acrylic copolymers consisting of multiple amine pendants for dispersing pigment. Journal of Colloid and Interface Science, 2009 , 334, 42-9	9.3	17	
105	Self-Piling Silicate Rods and Dendrites from High Aspect-Ratio Clay Platelets. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17940-17944	3.8	17	
104	Fine Dispersion of Hydrophobic Silicate Platelets in Anhydride-Cured Epoxy Nanocomposites. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7384-7388	3.9	17	
103	Layered confinement of protein in synthetic fluorinated mica via stepwise polyamine exchange. Journal of Physical Chemistry B, 2007 , 111, 10275-80	3.4	17	
102	Copolymer-Layered Silicate Hybrid Surfactants from the Intercalation of Montmorillonite with Amphiphilic Copolymers. <i>Langmuir</i> , 2003 , 19, 5184-5187	4	17	
101	Synthesis of Surfactant-Free and Morphology-Controllable Vanadium Diselenide for Efficient Counter Electrodes in Dye-Sensitized Solar Cells. <i>ACS Applied Materials & Dye-Sensitized Solar Cells</i> . 11, 2509	90 ² 250	9∮ ⁶	
100	A composite catalytic film of Ni-NPs/PEDOT: PSS for the counter electrodes in dyellensitized solar cells. <i>Electrochimica Acta</i> , 2014 , 146, 697-705	6.7	16	
99	Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity. <i>RSC Advances</i> , 2014 , 4, 15098	3.7	16	
98	Thermoresponsive Dual-Phase Transition and 3D Self-Assembly of Poly(N-Isopropylacrylamide) Tethered to Silicate Platelets. <i>Chemistry of Materials</i> , 2009 , 21, 4071-4079	9.6	16	
97	Electrostatic Dissipating Properties of Poly(oxyethylene)amine-Modified Polyamides. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 4284-4289	3.9	16	
96	Organically modified clays as rheology modifiers and dispersing agents for epoxy packing of white LED. <i>Composites Science and Technology</i> , 2016 , 132, 9-15	8.6	15	
95	Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets. <i>Chemosphere</i> , 2014 , 99, 49-55	8.4	15	
94	Evenly distributed thin-film Ag coating on stainless plate by tricomponent Ag/silicate/PU with antimicrobial and biocompatible properties. <i>ACS Applied Materials & Distributed Materials & Distribute</i>	9.5	15	
93	Well-Defined Polyamide Synthesis from Diisocyanates and Diacids Involving Hindered Carbodiimide Intermediates. <i>Macromolecules</i> , 2011 , 44, 46-59	5.5	15	
92	Hierarchical synthesis of silver nanoparticles and wires by copolymer templates and visible light. <i>Journal of Colloid and Interface Science</i> , 2010 , 352, 81-6	9.3	15	
91	Thermal stability of poly(oxyalkylene)amine-grafted polypropylene copolymers. <i>Polymer Degradation and Stability</i> , 2000 , 70, 171-184	4.7	15	
90	Hydrophilicity, crystallinity and electrostatic dissipating properties of poly(oxyethylene)-segmented polyurethanes. <i>Polymer International</i> , 1999 , 48, 57-62	3.3	15	

89	ZnO double layer film with a novel organic sensitizer as an efficient photoelectrode for dyeBensitized solar cells. <i>Journal of Power Sources</i> , 2016 , 325, 209-219	8.9	14
88	A platinum film with organized pores for the counter electrode in dye-sensitized solar cells. <i>Journal of Power Sources</i> , 2013 , 239, 496-499	8.9	14
87	Self-assembled clay films with a platelet-void multilayered nanostructure and flame-blocking properties. <i>Scientific Reports</i> , 2013 , 3, 2621	4.9	14
86	Preparation and electrostatic dissipating properties of poly(oxyalkylene)imide grafted polypropylene copolymers. <i>Polymer</i> , 2000 , 41, 2405-2417	3.9	14
85	Nanocomposites with enhanced electrical properties based on biodegradable poly(butylene succinate) and polyetheramine modified carbon nanotube. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2012 , 43, 322-328	5.3	13
84	Fine Dispersion and Property Differentiation of Nanoscale Silicate Platelets and Spheres in Epoxy Nanocomposites. <i>Polymer Journal</i> , 2005 , 37, 239-245	2.7	13
83	Electrospun nanofibers composed of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(oxyethylene)-imide imidazolium tetrafluoroborate as electrolytes for solid-state electrochromic devices. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 177, 32-43	6.4	12
82	Tailoring pigment dispersants with polyisobutylene twin-tail structures for electrowetting display application. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 14345-52	9.5	12
81	A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures. <i>RSC Advances</i> , 2013 , 3, 12847	3.7	12
80	Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. <i>RSC Advances</i> , 2013 , 3, 7392	3.7	12
79	Temperature and pH-responsive properties of poly(styrene-co-maleic anhydride)-grafting poly(oxypropylene)-amines. <i>Journal of Colloid and Interface Science</i> , 2009 , 336, 82-9	9.3	12
78	Synergistic effect of silicate clay and phosphazene-oxyalkyleneamines on thermal stability of cured epoxies. <i>Journal of Colloid and Interface Science</i> , 2010 , 343, 209-16	9.3	12
77	Amphiphilic silver-delaminated clay nanohybrids and their composites with polyurethane: physico-chemical and biological evaluations. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2178-2189	7.3	11
76	General Intercalation of Poly(oxyalkylene)Amidoacids for Anionic and Cationic Layered Clays. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 5001-5005	3.9	10
75	Mechanism of Silicate Platelet Self-Organization during Clay-Initiated Epoxy Polymerization. Journal of Physical Chemistry C, 2010 , 114, 10373-10378	3.8	10
74	Compatibilization of PS and PA6 Blends by Means of Poly(oxyalkylene)amine Modified Styrene-Maleic Anhydride Copolymer. <i>Journal of Polymer Research</i> , 2005 , 12, 439-447	2.7	10
73	Orderly arranged NLO materials on exfoliated layered templates based on dendrons with alternating moieties at the periphery. <i>Polymer Chemistry</i> , 2013 , 4, 2747	4.9	9
72	Inhibition of fumonisin B1 cytotoxicity by nanosilicate platelets during mouse embryo development. <i>PLoS ONE</i> , 2014 , 9, e112290	3.7	9

(2014-2012)

71	Molecular-level dispersion of phosphazenellay hybrids in polyurethane and synergistic influences on thermal and UV resistance. <i>Polymer</i> , 2012 , 53, 4060-4068	3.9	9	
70	Glass transition and exclusion model in crystallization of polyetherpolyester block copolymers with amide linkages. <i>Polymer</i> , 2002 , 43, 1365-1373	3.9	9	
69	Formation Mechanism and Characterization of AgMetal Chelate Polymer Prepared by a Wet Chemical Process. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 6332-6340	1.4	9	
68	Preparation and epoxy curing of p-nonylphenol/dicyclopentadiene adducts. <i>Journal of Applied Polymer Science</i> , 1999 , 74, 2196-2206	2.9	9	
67	Aromatic polyoxyalkylene amidoamines as curatives for epoxy resins derivatives from t-butyl isophthalic acid. <i>Journal of Polymer Research</i> , 1996 , 3, 97-104	2.7	9	
66	Effect of grafting architecture on the surfactant-like behavior of clay-poly(NiPAAm) nanohybrids. <i>Journal of Colloid and Interface Science</i> , 2012 , 387, 106-14	9.3	8	
65	The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets. <i>Journal of Biomedical Materials Research - Part A</i> , 2011 , 99, 192-202	5.4	8	
64	Aqueous dispersion of conjugated polymers by colloidal clays and their film photoluminescence. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 1897-902	3.4	8	
63	Tandem synthesis of silver nanoparticles and nanorods in the presence of poly(oxyethylene)-amidoacid template. <i>European Polymer Journal</i> , 2011 , 47, 1383-1389	5.2	8	
62	Preparation of N-Alkyl-Substituted Poly(oxyalkylene)amines and Their Reactivities toward Blocked Isocyanates. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 4231-4235	3.9	8	
61	High Electromagnetic Shielding of a 2.5-Gbps Plastic Transceiver Module Using Dispersive Multiwall Carbon Nanotubes. <i>Journal of Lightwave Technology</i> , 2008 , 26, 1256-1262	4	8	
60	Electrostatic dissipation and flexibility of poly(oxyalkylene)amine segmented epoxy derivatives. <i>Polymer International</i> , 2000 , 49, 387-394	3.3	8	
59	A novel multifunctional polymer ionic liquid as an additive in iodide electrolyte combined with silver mirror coating counter electrodes for quasi-solid-state dye-sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 4907-4921	13	8	
58	Evaluation of Efficacy and Toxicity of Exfoliated Silicate Nanoclays as a Feed Additive for Fumonisin Detoxification. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 6564-6571	5.7	7	
57	Immobilization of silver nanoparticles on exfoliated mica nanosheets to form highly conductive nanohybrid films. <i>Nanotechnology</i> , 2015 , 26, 465702	3.4	7	
56	Poly(N-isopropylacrylamide)-tethered silicate platelets for colloidal dispersion of conjugated polymers with thermoresponsive and photoluminescence properties. <i>Langmuir</i> , 2010 , 26, 10572-7	4	7	
55	Self-Assembly of Lamellar Clays to Hierarchical Microarrays. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 9637-9643	3.8	7	
54	Fine dispersion of phosphazene-amines and silicate platelets in epoxy nanocomposites and the synergistic fire-retarding effect. <i>Journal of Polymer Research</i> , 2014 , 21, 1	2.7	6	

53	MgAl Layered Double Hydroxides Intercalated with Polyetheramidoacids and Exhibiting a pH-Responsive Releasing Property. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 581-586	3.9	6
52	Thermoresponsive Behaviors of Poly(oxypropylene)-amidoamine Functionalized Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13016-13021	3.8	6
51	Phase inversion of self-aggregating Mannich amines with poly(oxyethylene) segments. <i>Journal of Colloid and Interface Science</i> , 2003 , 258, 155-162	9.3	6
50	Facile Fabrication of Flexible Electrodes and Immobilization of Silver Nanoparticles on Nanoscale Silicate Platelets to Form Highly Conductive Nanohybrid Films for Wearable Electronic Devices. <i>Nanomaterials</i> , 2019 , 10,	5.4	6
49	A Novel Gel Electrolyte Based on Polyurethane for Highly Efficient in Dye-sensitized Solar Cells. Journal of Polymer Research, 2016 , 23, 1	2.7	6
48	Phase change materials of fatty amine-modified silicate clays of nano layered structures. <i>RSC Advances</i> , 2017 , 7, 23530-23534	3.7	5
47	Simultaneous Occurrence of Self-Assembling Silicate Skeletons to Wormlike Microarrays and Epoxy Ring-Opening Polymerization. <i>Macromolecules</i> , 2009 , 42, 4362-4365	5.5	5
46	Formation of molecular bundles from self-assembly of symmetrical poly(oxyalkylene)-diamido acids. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13510-4	3.4	5
45	Thermal Stability and Combustion Behaviors of Poly(oxybutylene)amides. <i>Polymer Journal</i> , 2002 , 34, 72-80	2.7	5
44	Silver Nanoparticles on Nanoscale Silica Platelets (AgNP/NSP) and Nanoscale Silica Platelets (NSP) Inhibit the Development of f. sp <i>ACS Applied Bio Materials</i> , 2019 , 2, 4978-4985	4.1	4
43	Interaction of novel fluorescent nanoscale ionic silicate platelets with biomaterials for biosensors. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 10771-8	9.5	4
42	First evidence of singlet oxygen species mechanism in silicate clay for antimicrobial behavior. <i>Applied Clay Science</i> , 2014 , 99, 18-23	5.2	4
41	Thin film morphologies of pi-conjugated rod-coil block copolymers with thermoresponsive property: a combined experimental and molecular simulation study. <i>Journal of Chemical Physics</i> , 2010 , 132, 214901	3.9	4
40	Formation of hierarchical molecular assemblies from poly(oxypropylene)-segmented amido acids under AFM tapping. <i>Langmuir</i> , 2007 , 23, 4108-11	4	4
39	Effects of poly(oxyethylene)-block structure in polyetheramines on the modified carbon nanotube/poly(lactic acid) composites. <i>Composites Part A: Applied Science and Manufacturing</i> , 2015 , 78, 18-26	8.4	3
38	Evaluation of Carbon Dioxide-Based Urethane Acrylate Composites for Sealers of Root Canal Obturation. <i>Polymers</i> , 2020 , 12,	4.5	3
37	Controlled self-assemblies of clay silicate platelets by organic salt modifier. RSC Advances, 2012, 2, 8410	03.7	3
36	Passively mode-locked lasers using saturable absorber incorporating dispersed single-wall carbon nanotubes 2009 ,		3

(2014-2005)

35	Synthesis and properties of cross-linkable macromers from the selective substitution of poly(oxyalkylene)-amines and cyanuric chloride. <i>Polymer</i> , 2005 , 46, 4619-4626	3.9	3	
34	Preparation, Characterization, and Electrostatic Dissipating Properties of Poly(oxyalkylene)-Segmented Polyureas. <i>Polymer Journal</i> , 2001 , 33, 248-254	2.7	3	
33	Crystallization kinetics for low-ether-content polyetherpolyester block copolymers with amide linkages. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2001 , 39, 2469-2480	2.6	3	
32	Synthesis and in situ transformation of poly(oxybutylene)amides by butoxylation. <i>Journal of Applied Polymer Science</i> , 2001 , 82, 435-445	2.9	3	
31	Phase behaviors of poly(oxyethylene)-grafted polypropylene copolymers. <i>Journal of Polymer Research</i> , 2000 , 7, 21-28	2.7	3	
30	A Method to Prepare Magnetic Nanosilicate Platelets for Effective Removal of Microcystis aeruginosa and Microcystin-LR. <i>Methods in Molecular Biology</i> , 2017 , 1600, 85-94	1.4	2	
29	Functionalizing and molecular bonding nanoscale silicate-polymer composites of epoxies and Polyacrylates. <i>Journal of Polymer Research</i> , 2017 , 24, 1	2.7	2	
28	Unusual exfoliation of layered silicate clays by non-aqueous amine diffusion mechanism. <i>Journal of Polymer Research</i> , 2016 , 23, 1	2.7	2	
27	Polymer-assisted dispersion of carbon nanotubes and silver nanoparticles and their applications. <i>RSC Advances</i> , 2013 , 3, 22436	3.7	2	
26	Performance of Graphene Mediated Saturable Absorber on Stable Mode-Locked Fiber Lasers Employing Different Nano-Dispersants. <i>Journal of Lightwave Technology</i> , 2012 , 30, 3413-3419	4	2	
25	Hierarchical rearrangement of self-assembled molecular bundle strands from poly(oxyethylene)-segmented amido acids. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6240-5	3.4	2	
24	Reactive Tetramethylpiperidine-Containing Poly(oxypropylenediamines) as Light Stabilizers. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 1944-1947	3.9	2	
23	Self-aligned nematic crystallization of poly(oxypropylene)amine intercalated silicates on toluene/water interface. <i>Materials Science and Engineering C</i> , 2008 , 28, 1352-1355	8.3	2	
22	Electromagnetic Shielding Performance for a 2.5 Gb/s Plastic Transceiver Module Using Dispersive Multiwall Carbon Nanotubes 2007 ,		2	
21	Synthesis and interfacial behaviors of amphiphilic poly(oxypropylene) amidoacids. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 646-652	2.5	2	
20	Composition of nanoclay supported silver nanoparticles in furtherance of mitigating cytotoxicity and genotoxicity. <i>PLoS ONE</i> , 2021 , 16, e0247531	3.7	2	
19	Nanohybrids of silver particles on clay platelets delaminate Pseudomonas biofilms. <i>Nanomedicine</i> , 2014 , 9, 1019-33	5.6	1	
18	Novel Polymer Gel Electrolytes with Poly(oxyethylene)-Amidoacid Microstructures for Highly Efficient Quasi-Solid-State Dye-Sensitized Solar Cells. <i>Materials Research Society Symposia Proceedings</i> , 2014 , 1667, 32		1	

17	Effect of Photo-initiator on Photosensitive Emission Polymer. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2013 , 26, 757-764	0.7	1
16	Self-assembled and crystallized composites made from poly(ether amine) and montmorillonite in the presence of copper(II) ions. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 3437-3445	2.9	1
15	Copper-ion-assisted self-assembly of silicate clays in rod- and disklike morphologies. <i>Langmuir</i> , 2010 , 26, 10177-82	4	1
14	Amphiphilic Poly(Oxyalkylene)-Amines Interacting with Layered Clays: Intercalation, Exfoliation, and New Applications459-480		1
13	Hierarchical Transformation of Silver Morphologies on Clay Film from Spheres, Cubes, Rods to Lengthy Nano-Wires. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1450, 19		1
12	Hydrophobic Intercalation of Layered Silicate Clays and Hierarchical Self-Assemblies via Platelet-Shape Directing. <i>Macromolecular Symposia</i> , 2009 , 279, 119-124	0.8	1
11	Easy preparation of crosslinked polymer films from polyoxyalkylene diamine and poly(styrenethaleic anhydride) for electrostatic dissipation. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 716-723	2.9	1
10	Diaryl Iodonium Photo Cleavage in Smectic Silicate Cell. <i>Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi]</i> , 2007 , 20, 77-82	0.7	1
9	Poly(oxyethylene)diamine-derived hydrophilic copolymers for emulsifying diglycidylether of bisphenol-A. <i>Journal of Applied Polymer Science</i> , 2004 , 94, 1797-1802	2.9	1
8	Immobilization of Air-Stable Copper Nanoparticles on Graphene Oxide Flexible Hybrid Films for Smart Clothes <i>Polymers</i> , 2022 , 14,	4.5	1
7	Synthesis and in situ transformation of poly(oxybutylene)amides by butoxylation 2001, 82, 435		1
6	Biocompatibility and antimicrobial activity of copper(II) oxide hybridized with nano silicate platelets. <i>Surface and Coatings Technology</i> , 2022 , 435, 128253	4.4	1
5	Clay films with variable metal ions and self-assembled silicate layer-void nanostructures. <i>RSC Advances</i> , 2014 , 4, 6356	3.7	
4	First Evidence of Singlet Oxygen Species Mechanism in Silicate Clay for Antimicrobial Behavior. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1569, 67-72		
3	Fabrication of Flexible and Conductive Graphene-Silver Films by Polymer Dispersion and Coating Method. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1547, 35-41		
2	Enhanced Performance of Dye Sensitized Solar Cell by the Novel Composite TiO2/POEM Photoanodes. <i>Materials Research Society Symposia Proceedings</i> , 2012 , 1442, 19		
1	Effect of Photoelectron on the Condensed Film of Poly(oxypropylene)amine Intercalated Silicates. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008 , 21, 15-19	0.7	