Katarzyna Nawrotek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/656053/publications.pdf

Version: 2024-02-01

		840776	888059
18	282	11	17
papers	citations	h-index	g-index
18	18	18	481
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Controlling the Spatiotemporal Release of Nerve Growth Factor by Chitosan/Polycaprolactone Conduits for Use in Peripheral Nerve Regeneration. International Journal of Molecular Sciences, 2022, 23, 2852.	4.1	12
2	Fabrication and Characterization of Polycaprolactone/Chitosan—Hydroxyapatite Hybrid Implants for Peripheral Nerve Regeneration. Polymers, 2021, 13, 775.	4.5	11
3	Tenâ€eleven translocation methylcytosine dioxygenase 3â€loaded microspheres penetrate neurons in vitro causing active demethylation and neurite outgrowth. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 463-474.	2.7	1
4	Understanding Electrodeposition of Chitosan–Hydroxyapatite Structures for Regeneration of Tubular-Shaped Tissues and Organs. Materials, 2021, 14, 1288.	2.9	14
5	Investigation of Parameters Influencing Tubular-Shaped Chitosan-Hydroxyapatite Layer Electrodeposition. Molecules, 2021, 26, 104.	3.8	4
6	Influence of chitosan average molecular weight on degradation and stability of electrodeposited conduits. Carbohydrate Polymers, 2020, 244, 116484.	10.2	18
7	The malleable brain: plasticity of neural circuits and behavior – a review from students to students. Journal of Neurochemistry, 2017, 142, 790-811.	3.9	34
8	<scp>T</scp> hermogelling chitosan lactate hydrogel improves functional recovery after a C2 spinal cord hemisection in rat. Journal of Biomedical Materials Research - Part A, 2017, 105, 2004-2019.	4.0	27
9	Assessment of degradation and biocompatibility of electrodeposited chitosan and chitosan–carbon nanotube tubular implants. Journal of Biomedical Materials Research - Part A, 2016, 104, 2701-2711.	4.0	16
10	Epineurium-mimicking chitosan conduits for peripheral nervous tissue engineering. Carbohydrate Polymers, 2016, 152, 119-128.	10.2	23
11	Tubular electrodeposition of chitosan–carbon nanotube implants enriched with calcium ions. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 256-266.	3.1	33
12	Chitosan-based hydrogel implants enriched with calcium ions intended for peripheral nervous tissue regeneration. Carbohydrate Polymers, 2016, 136, 764-771.	10.2	62
13	Peripheral nerve implants enriched with chemotactic factors for peripheral nervous tissue engineering. SpringerPlus, 2015, 4, L30.	1.2	1
14	CYTOTOXICITY OF CHITOSAN BASED THERMO-SENSITIVE HYDROGELS INTENDED FOR NERVOUS TISSUE ENGINEERING. Progress on Chemistry and Application of Chitin and Its Derivatives, 2015, XX, 222-235.	0.1	2
15	How Far is Environmental Engineering from Biomedical Engineering?. Chemistry, Didactics, Ecology, Metrology, 2015, 20, 7-18.	0.6	0
16	Structural characteristics of thermosensitive chitosan glutamate hydrogels in variety of physiological environments. Journal of Molecular Structure, 2014, 1074, 629-635.	3.6	13
17	Reconstruction of the Injured Spinal Cord by Implantation of a Hydrogel based on Chitosan and \hat{I}^2 -Glycerol Phosphate-motor Behavior and Ventilatory Assessments. Procedia Engineering, 2013, 59, 226-232.	1.2	3
18	Modeling of Drug (Albumin) Release from Thermosensitive Chitosan Hydrogels. Industrial & Engineering Chemistry Research, 2011, 50, 5866-5872.	3.7	8