Jürgen Zeier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6560376/publications.pdf

Version: 2024-02-01

51	6,226	40	51
papers	citations	h-index	g-index
52	52	52	6443
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Natural variation in temperature-modulated immunity uncovers transcription factor bHLH059 as a thermoresponsive regulator in Arabidopsis thaliana. PLoS Genetics, 2021, 17, e1009290.	3.5	23
2	UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell, 2021, 33, 714-734.	6.6	47
3	The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent transcriptional reprogramming and immune priming. Plant Physiology, 2021, 186, 1679-1705.	4.8	39
4	Metabolic regulation of systemic acquired resistance. Current Opinion in Plant Biology, 2021, 62, 102050.	7.1	69
5	Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytologist, 2021, 232, 2491-2505.	7. 3	9
6	Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Journal of Experimental Botany, 2020, 71, 6444-6459.	4.8	36
7	Putrescine elicits <scp>ROS</scp> â€dependent activation of the salicylic acid pathway in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2020, 43, 2755-2768.	5.7	40
8	Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15735-15744.	7.1	134
9	Fluctuating Light Interacts with Time of Day and Leaf Development Stage to Reprogram Gene Expression. Plant Physiology, 2019, 179, 1632-1657.	4.8	53
10	Nitrite and nitric oxide are important in the adjustment of primary metabolism during the hypersensitive response in tobacco. Journal of Experimental Botany, 2019, 70, 4571-4582.	4.8	10
11	N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Current Opinion in Plant Biology, 2019, 50, 44-57.	7.1	107
12	A Role for Tocopherol Biosynthesis in Arabidopsis Basal Immunity to Bacterial Infection. Plant Physiology, 2019, 181, 1008-1028.	4.8	49
13	A critical role for Arabidopsis <scp>MILDEW RESISTANCE LOCUS</scp> O2 in systemic acquired resistance. Plant Journal, 2018, 94, 1064-1082.	5.7	28
14	Flavin Monooxygenase-Generated N-Hydroxypipecolic Acid Is a Critical Element of Plant Systemic Immunity. Cell, 2018, 173, 456-469.e16.	28.9	297
15	A MPK3/6-WRKY33-ALD1-Pipecolic Acid Regulatory Loop Contributes to Systemic Acquired Resistance. Plant Cell, 2018, 30, 2480-2494.	6.6	119
16	Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. Plant and Cell Physiology, 2018, 59, 1592-1607.	3.1	31
17	<scp> </scp> â€lysine metabolism to <i>N</i> â€hydroxypipecolic acid: an integral immuneâ€activating pathway in plants. Plant Journal, 2018, 96, 5-21.	5.7	88
18	Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity. Plant Physiology, 2017, 174, 124-153.	4.8	111

#	Article	IF	Citations
19	<i>Botrytis cinerea</i> B05.10 promotes disease development in <i>Arabidopsis</i> by suppressing WRKY33â€mediated host immunity. Plant, Cell and Environment, 2017, 40, 2189-2206.	5 . 7	60
20	Regulatory and Functional Aspects of Indolic Metabolism in Plant Systemic Acquired Resistance. Molecular Plant, 2016, 9, 662-681.	8.3	62
21	Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways. Plant Cell, 2016, 28, 102-129.	6.6	246
22	Insect eggs induce a systemic acquired resistance in Arabidopsis. Plant Journal, 2014, 80, 1085-1094.	5.7	73
23	Spatial H2O2 Signaling Specificity: H2O2 from Chloroplasts and Peroxisomes Modulates the Plant Transcriptome Differentially. Molecular Plant, 2014, 7, 1191-1210.	8.3	167
24	Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 2013, 4, 30.	3.6	268
25	New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell and Environment, 2013, 36, 2085-2103.	5.7	296
26	Copper and herbivory lead to priming and synergism in phytohormones and plant volatiles in the absence of salicylate-jasmonate antagonism. Plant Signaling and Behavior, 2013, 8, e24264.	2.4	10
27	The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. Journal of Experimental Botany, 2013, 64, 553-568.	4.8	116
28	Reprogramming of plants during systemic acquired resistance. Frontiers in Plant Science, 2013, 4, 252.	3.6	100
29	Pipecolic Acid, an Endogenous Mediator of Defense Amplification and Priming, Is a Critical Regulator of Inducible Plant Immunity. Plant Cell, 2013, 24, 5123-5141.	6.6	525
30	Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant Signaling and Behavior, 2013, 8, e26366.	2.4	68
31	Heavy metal stress can prime for herbivoreâ€induced plant volatile emission. Plant, Cell and Environment, 2012, 35, 1287-1298.	5.7	47
32	Cytokinins Mediate Resistance against <i>Pseudomonas syringae</i> in Tobacco through Increased Antimicrobial Phytoalexin Synthesis Independent of Salicylic Acid Signaling Â. Plant Physiology, 2011, 157, 815-830.	4.8	178
33	A role for βâ€sitosterol to stigmasterol conversion in plant–pathogen interactions. Plant Journal, 2010, 63, 254-268.	5.7	134
34	Post-Translational Derepression of Invertase Activity in Source Leaves via Down-Regulation of Invertase Inhibitor Expression Is Part of the Plant Defense Response. Molecular Plant, 2010, 3, 1037-1048.	8.3	105
35	Methyl Salicylate Production and Jasmonate Signaling Are Not Essential for Systemic Acquired Resistance in <i>Arabidopsis</i> A. Plant Cell, 2009, 21, 954-971.	6.6	208
36	Light Regulation and Daytime Dependency of Inducible Plant Defenses in Arabidopsis: Phytochrome Signaling Controls Systemic Acquired Resistance Rather Than Local Defense. Plant Physiology, 2008, 147, 790-801.	4.8	236

#	Article	IF	CITATIONS
37	<i>>Pseudomonas syringae</i> Elicits Emission of the Terpenoid (E,E)-4,8,12-Trimethyl-1,3,7,11-Tridecatetraene in <i>Arabidopsis</i> Expression of the Terpene Synthase TPS4. Molecular Plant-Microbe Interactions, 2008, 21, 1482-1497.	2.6	45
38	A Central Role of Abscisic Acid in Drought Stress Protection of <i>Agrobacterium</i> Induced Tumors on Arabidopsis. Plant Physiology, 2007, 145, 853-862.	4.8	74
39	Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis. Plant, Cell and Environment, 2007, 30, 39-52.	5.7	138
40	Bacterial nonâ€host resistance: interactions of <i>Arabidopsis</i> with nonâ€adapted <i>Pseudomonas syringae</i> strains. Physiologia Plantarum, 2007, 131, 448-461.	5.2	49
41	Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant Journal, 2007, 50, 500-513.	5.7	347
42	Nitric oxide (NO) as an intermediate in the cryptogein-induced hypersensitive response - a critical re-evaluation. Plant, Cell and Environment, 2006, 29, 59-69.	5.7	62
43	The Arabidopsis Flavin-Dependent Monooxygenase FMO1 Is an Essential Component of Biologically Induced Systemic Acquired Resistance Â. Plant Physiology, 2006, 141, 1666-1675.	4.8	229
44	Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host. Plant Journal, 2005, 43, 226-237.	5.7	67
45	Age-dependent variations of local and systemic defence responses in Arabidopsis leaves towards an avirulent strain of Pseudomonas syringae. Physiological and Molecular Plant Pathology, 2005, 66, 30-39.	2.5	36
46	Arabidopsis Nonsymbiotic Hemoglobin AHb1 Modulates Nitric Oxide Bioactivity. Plant Cell, 2004, 16, 2785-2794.	6.6	332
47	Genetic Elucidation of Nitric Oxide Signaling in Incompatible Plant-Pathogen Interactions. Plant Physiology, 2004, 136, 2875-2886.	4.8	165
48	Light conditions influence specific defence responses in incompatible plant?pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta, 2004, 219, 673-83.	3.2	190
49	Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots. Planta, 1999, 209, 1-12.	3.2	112
50	Fourier transform infrared-spectroscopic characterisation of isolated endodermal cell walls from plant roots: chemical nature in relation to anatomical development. Planta, 1999, 209, 537-542.	3.2	62
51	Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of five monocotyledoneous species: chemical composition in relation to fine structure. Planta, 1998, 206, 349-361.	3.2	125