
Murzabek Baikenov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6560136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Kinetic Study of the Thermal Decomposition of Primary Coal Tar in the Presence of Catalysts with Nickel, Cobalt, and Iron Oxides Supported onto Microsilicate. Solid Fuel Chemistry, 2022, 56, 29-36.	0.7	1
2	Catalytic Properties of Ultrafine Nickel Powder in the Hydrogenation of Anthracene and Phenanthrene. Solid Fuel Chemistry, 2022, 56, 53-58.	0.7	1
3	Kinetic study of the thermolysis process of oil sludge (atasu-alashankou) with nickel, cobalt and iron deposited on microsilicate. Eastern-European Journal of Enterprise Technologies, 2022, 2, 19-24.	0.5	1
4	TGA-Based Thermokinetics of High-Viscosity Oil Decomposition in the Presence of Nanocatalysts, Catalytic Additives, and Polymers. Petroleum Chemistry, 2021, 61, 431-437.	1.4	0
5	Determination of the Thermodynamic Functions of a Fraction of Primary Coal Tar by an Additive Method. Solid Fuel Chemistry, 2021, 55, 171-176.	0.7	Ο
6	Determination of optimal conditions for processing oil bottom sediments using electrohydraulic effect. Eastern-European Journal of Enterprise Technologies, 2021, 5, 30-38.	0.5	0
7	Kinetics of Cavitation of an Intermediate Fraction of Coal Tar. Solid Fuel Chemistry, 2020, 54, 208-213.	0.7	1
8	The use of catalytic additives for hydrogenation of polyaromatic hydrocarbons. Materials Today: Proceedings, 2020, 31, 611-614.	1.8	0
9	Catalytic Hydrogenation of a Model Mixture of Anthracene and Phenanthrene. Solid Fuel Chemistry, 2019, 53, 230-238.	0.7	3
10	Thermal Decomposition of a Mixture of Tar with Primary Coal Tar with the Additives of Iron Compounds. Solid Fuel Chemistry, 2019, 53, 96-104.	0.7	0
11	Kinetics of Hydrogenation of Heavy and Solid Hydrocarbon Raw Materials. Solid Fuel Chemistry, 2019, 53, 319-323.	0.7	1
12	Synthesis of Al2O3/carbon composites from wastewater as superior adsorbents for Pb(II) and Cd(II) removal. Microporous and Mesoporous Materials, 2018, 255, 69-75.	4.4	32
13	Mathematical simulation of the hydrogenation of borodino coal. Solid Fuel Chemistry, 2017, 51, 111-114.	0.7	1
14	Rapid separation and large-scale synthesis of β-FeOOH nanospindles for direct coal liquefaction. Fuel Processing Technology, 2017, 165, 80-86.	7.2	11
15	Catalytic hydrogenation of anthracene in ethanol. Solid Fuel Chemistry, 2016, 50, 256-259.	0.7	1
16	Calculation of the thermodynamic parameters of a fraction of primary coal tar. Solid Fuel Chemistry, 2016, 50, 277-281.	0.7	1
17	Effect of iron additives on the thermal degradation of coal from the Shubarkol deposit. Solid Fuel Chemistry, 2016, 50, 300-305.	0.7	Ο
18	Effect of coal tar on the properties of butadiene–nitrile rubbers. Solid Fuel Chemistry, 2016, 50, 376-380.	0.7	3

Murzabek Baikenov

#	Article	IF	CITATIONS
19	Equilibrium kinetic analysis of a model mixture of anthracene and benzothiophene. Solid Fuel Chemistry, 2015, 49, 335-338.	0.7	0
20	Effect of new catalytic systems on the process of anthracene hydrogenation. Solid Fuel Chemistry, 2015, 49, 150-155.	0.7	2
21	Influence of catalytic systems on process of model object hydrogenation. International Journal of Coal Science and Technology, 2014, 1, 88-92.	6.0	4
22	Isomerization of phenols from a coal tar fraction. Solid Fuel Chemistry, 2014, 48, 208-213.	0.7	1
23	Cavitation extraction of phenols form coal tar. Solid Fuel Chemistry, 2013, 47, 27-33.	0.7	2
24	Simulation of the destructive hydrogenation of coal asphaltene (Short Communication). Solid Fuel Chemistry, 2013, 47, 234-236.	0.7	0
25	Catalytic hydrogenation of a three-component mixture of polyaromatic hydrocarbons in the presence of iron-containing additives. Solid Fuel Chemistry, 2013, 47, 107-113.	0.7	1
26	Effect of alternating electric current frequency on the viscosity of coal tar. Solid Fuel Chemistry, 2013, 47, 283-287.	0.7	0
27	Application of iron chloride to the hydrogenation of coal from the Shubarkol deposit in a mixture with polyethylene. Solid Fuel Chemistry, 2012, 46, 319-321.	0.7	0
28	Development of a technology for coal conversion in the presence of coal tar. Solid Fuel Chemistry, 2011, 45, 267-269.	0.7	0
29	Effect of cavitation treatment on the chemical composition of coal tar. Solid Fuel Chemistry, 2011, 45, 353-358.	0.7	2
30	Hydrogenation of a model mixture of anthracene with benzothiophene. Solid Fuel Chemistry, 2010, 44, 419-422.	0.7	2
31	Kinetics of process of hydrogenation of heavy crude from Karazhambas crude in a synthesis-gas medium. Chemistry and Technology of Fuels and Oils, 1996, 32, 320-322.	0.5	0
32	Hydrocarbon composition of products from combined hydrogenation of shubarkol coal and heavy petroleum resid. Chemistry and Technology of Fuels and Oils, 1996, 32, 203-204.	0.5	0
33	Destructive hydrogenat ion of heavy crude by means of synthesis gas. Chemistry and Technology of Fuels and Oils, 1994, 30, 151-155.	0.5	0
34	Products from hydrogenation of vacuum resid as a raw material for obtaining aromatic hydrocarbons. Chemistry and Technology of Fuels and Oils, 1994, 30, 292-295.	0.5	0