Bruna Hryniewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6559399/publications.pdf Version: 2024-02-01

ROLINA HOVNIEWICZ

#	Article	IF	CITATIONS
1	Sensing Materials: Nanostructured Platforms Based on Conducting Polymers for Sensing. , 2023, , 269-285.		2
2	Modified Electrodes Surface with Inorganic Oxides and Conducting Polymers. , 2022, , 345-359.		0
3	Development of polypyrrole (nano)structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. Materials Today Chemistry, 2022, 24, 100817.	3.5	28
4	Enhancement of polypyrrole nanotubes stability by gold nanoparticles for the construction of flexible solid-state supercapacitors. Journal of Electroanalytical Chemistry, 2022, 911, 116212.	3.8	10
5	Electrodes Based on PEDOT Nanotubes Decorated with Gold Nanoparticles for Biosensing and Energy Storage. ACS Applied Nano Materials, 2021, 4, 9945-9956.	5.0	10
6	Conducting polymers and composites nanowires for energy devices: A brief review. Materials Science for Energy Technologies, 2020, 3, 78-90.	1.8	24
7	Harnessing energy from micropollutants electrocatalysis in a high-performance supercapacitor based on PEDOT nanotubes. Applied Materials Today, 2020, 18, 100538.	4.3	6
8	Recent trends of micro and nanostructured conducting polymers in health and environmental applications. Journal of Electroanalytical Chemistry, 2020, 879, 114754.	3.8	16
9	Enhancement of organophosphate degradation by electroactive pyrrole and imidazole copolymers. Electrochimica Acta, 2020, 338, 135842.	5.2	9
10	Impedimetric studies about the degradation of polypyrrole nanotubes during galvanostatic charge and discharge cycles. Journal of Electroanalytical Chemistry, 2019, 855, 113636.	3.8	18
11	Influence of the pH on the electrochemical synthesis of polypyrrole nanotubes and the supercapacitive performance evaluation. Electrochimica Acta, 2019, 293, 447-457.	5.2	36
12	Enzymeless PEDOT-based electrochemical sensor for the detection of nitrophenols and organophosphates. Sensors and Actuators B: Chemical, 2018, 257, 570-578.	7.8	61
13	Interfacial characterization and supercapacitive behavior of PEDOT nanotubes modified electrodes. Journal of Electroanalytical Chemistry, 2018, 823, 573-579.	3.8	15
14	PEDOT Nanotubes Electrochemically Synthesized on Flexible Substrates: Enhancement of Supercapacitive and Electrocatalytic Properties. ACS Applied Nano Materials, 2018, 1, 3913-3924.	5.0	21
15	Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. Journal of Solid State Electrochemistry, 2017, 21, 2489-2515.	2.5	68
16	Direct electrodeposition of imidazole modified poly(pyrrole) copolymers: synthesis, characterization and supercapacitive properties. Electrochimica Acta, 2017, 243, 260-269.	5.2	28