List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6559208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prevalence of hepatic steatosis in an urban population in the United States: Impact of ethnicity. Hepatology, 2004, 40, 1387-1395.	3.6	3,250
2	Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics, 2008, 40, 1461-1465.	9.4	2,764
3	Human Fatty Liver Disease: Old Questions and New Insights. Science, 2011, 332, 1519-1523.	6.0	1,780
4	Accumulation of Dietary Cholesterol in Sitosterolemia Caused by Mutations in Adjacent ABC Transporters. , 2000, 290, 1771-1775.		1,412
5	Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E462-E468.	1.8	1,323
6	Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genetics, 2005, 37, 161-165.	9.4	1,246
7	Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Human Mutation, 1992, 1, 445-466.	1.1	1,045
8	Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nature Genetics, 2014, 46, 352-356.	9.4	938
9	High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nature Medicine, 2001, 7, 853-857.	15.2	675
10	Binding of Proprotein Convertase Subtilisin/Kexin Type 9 to Epidermal Growth Factor-like Repeat A of Low Density Lipoprotein Receptor Decreases Receptor Recycling and Increases Degradation. Journal of Biological Chemistry, 2007, 282, 18602-18612.	1.6	660
11	The LDL Receptor Locus in Familial Hypercholesterolemia: Mutational Analysis of a Membrane Protein. Annual Review of Genetics, 1990, 24, 133-170.	3.2	655
12	Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16237-16242.	3.3	645
13	Exome Sequencing, <i>ANGPTL3 </i> Mutations, and Familial Combined Hypolipidemia. New England Journal of Medicine, 2010, 363, 2220-2227.	13.9	640
14	Molecular Characterization of Loss-of-Function Mutations in PCSK9 and Identification of a Compound Heterozygote. American Journal of Human Genetics, 2006, 79, 514-523.	2.6	578
15	A Protein-Truncating <i>HSD17B13</i> Variant and Protection from Chronic Liver Disease. New England Journal of Medicine, 2018, 378, 1096-1106.	13.9	556
16	PCSK9: a convertase that coordinates LDL catabolism. Journal of Lipid Research, 2009, 50, S172-S177.	2.0	517
17	Molecular biology of PCSK9: its role in LDL metabolism. Trends in Biochemical Sciences, 2007, 32, 71-77.	3.7	512
18	A Sequence Variation (I148M) in PNPLA3 Associated with Nonalcoholic Fatty Liver Disease Disrupts Triglyceride Hydrolysis. Journal of Biological Chemistry, 2010, 285, 6706-6715.	1.6	507

#	Article	IF	CITATIONS
19	A Spectrum of PCSK9 Alleles Contributes to Plasma Levels of Low-Density Lipoprotein Cholesterol. American Journal of Human Genetics, 2006, 78, 410-422.	2.6	495
20	Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nature Genetics, 2007, 39, 513-516.	9.4	473
21	The Dallas Heart Study: a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. American Journal of Cardiology, 2004, 93, 1473-1480.	0.7	472
22	Genetic and Metabolic Determinants of Plasma PCSK9 Levels. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2537-2543.	1.8	434
23	ABCG5 and ABCG8 Are Obligate Heterodimers for Protein Trafficking and Biliary Cholesterol Excretion. Journal of Biological Chemistry, 2003, 278, 48275-48282.	1.6	401
24	Atypical angiopoietin-like protein that regulates ANGPTL3. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19751-19756.	3.3	375
25	Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. Journal of Clinical Investigation, 2009, 119, 70-9.	3.9	322
26	A feed-forward loop amplifies nutritional regulation of PNPLA3. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7892-7897.	3.3	319
27	Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology, 2015, 61, 108-118.	3.6	297
28	Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nature Genetics, 2017, 49, 842-847.	9.4	288
29	Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16109-16114.	3.3	281
30	Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface. Journal of Clinical Investigation, 2002, 110, 659-669.	3.9	252
31	Expression and Characterization of a PNPLA3 Protein Isoform (I148M) Associated with Nonalcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2011, 286, 37085-37093.	1.6	240
32	Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature, 2016, 533, 561-564.	13.7	233
33	Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. Journal of Clinical Investigation, 2012, 122, 4130-4144.	3.9	221
34	Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13045-13050.	3.3	199
35	Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. Journal of Lipid Research, 2002, 43, 486-494.	2.0	199
36	The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology, 2017, 66, 1111-1124.	3.6	198

#	Article	IF	CITATIONS
37	Expression of ABCG5 and ABCG8 Is Required for Regulation of Biliary Cholesterol Secretion. Journal of Biological Chemistry, 2005, 280, 8742-8747.	1.6	191
38	ANGPTL8/Betatrophin Does Not Control Pancreatic Beta Cell Expansion. Cell, 2014, 159, 691-696.	13.5	187
39	Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proceedings of the United States of America, 2019, 116, 9521-9526.	3.3	182
40	Inactivation of Tm6sf2, a Gene Defective in Fatty Liver Disease, Impairs Lipidation but Not Secretion of Very Low Density Lipoproteins. Journal of Biological Chemistry, 2016, 291, 10659-10676.	1.6	172
41	No Association Between Plasma Levels of Plant Sterols and Atherosclerosis in Mice and Men. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2326-2332.	1.1	167
42	ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. Journal of Lipid Research, 2015, 56, 1308-1317.	2.0	165
43	Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. Journal of Lipid Research, 2015, 56, 1296-1307.	2.0	153
44	ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. Journal of Lipid Research, 2017, 58, 1166-1173.	2.0	152
45	Mutations in ATP-cassette binding proteins G5 (ABCG5) and G8 (ABCG8) causing sitosterolemia. Human Mutation, 2001, 18, 359-360.	1.1	149
46	Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell-type specific pathways. ELife, 2015, 4, e07999.	2.8	143
47	PNPLA3, CGlâ€58, and Inhibition of Hepatic Triglyceride Hydrolysis in Mice. Hepatology, 2019, 69, 2427-2441.	3.6	129
48	Selective sterol accumulation in ABCG5/ABCG8-deficient mice. Journal of Lipid Research, 2004, 45, 301-307.	2.0	123
49	Dissociation between <i>APOC3</i> variants, hepatic triglyceride content and insulin resistance. Hepatology, 2011, 53, 467-474.	3.6	122
50	Relative roles of ABCG5/ABCG8 in liver and intestine. Journal of Lipid Research, 2015, 56, 319-330.	2.0	122
51	Expression of the VLDL Receptor in Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 1996, 16, 407-415.	1.1	120
52	Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. Journal of Lipid Research, 2020, 61, 1271-1286.	2.0	120
53	Genetic Variation in ANGPTL4 Provides Insights into Protein Processing and Function. Journal of Biological Chemistry, 2009, 284, 13213-13222.	1.6	112
54	Hepatic ANGPTL3 regulates adipose tissue energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11630-11635.	3.3	109

#	Article	IF	CITATIONS
55	Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. Journal of Lipid Research, 2012, 53, 1932-1943.	2.0	92
56	Deletion of <i>GPIHBP1</i> causing severe chylomicronemia. Journal of Inherited Metabolic Disease, 2012, 35, 531-540.	1.7	80
57	Patatin-like phospholipase domain–containing protein 3 promotes transfers of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. Journal of Biological Chemistry, 2018, 293, 6958-6968.	1.6	74
58	Sterol Transfer by ABCG5 and ABCG8. Journal of Biological Chemistry, 2006, 281, 27894-27904.	1.6	72
59	Indices of Cholesterol Metabolism and Relative Responsiveness to Ezetimibe and Simvastatin. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 800-809.	1.8	70
60	ANGPTL8 Blockade With a Monoclonal Antibody Promotes Triglyceride Clearance, Energy Expenditure, and Weight Loss in Mice. Endocrinology, 2017, 158, 1252-1259.	1.4	59
61	Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. Hepatology, 2018, 67, 2182-2195.	3.6	51
62	Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. Journal of Clinical Investigation, 2007, 117, 165-174.	3.9	51
63	ANGPTL8 has both endocrine and autocrine effects on substrate utilization. JCI Insight, 2020, 5, .	2.3	48
64	Functional Asymmetry of Nucleotide-binding Domains in ABCG5 and ABCG8. Journal of Biological Chemistry, 2006, 281, 4507-4516.	1.6	44
65	Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. ELife, 2017, 6, .	2.8	44
66	Molecular basis of cholesterol efflux via ABCG subfamily transporters. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	44
67	Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1249-E1258.	3.3	39
68	<i>HSD17B13</i> and Chronic Liver Disease in Blacks and Hispanics. New England Journal of Medicine, 2018, 379, 1876-1877.	13.9	39
69	Genetic variant in <i>PNPLA3</i> is associated with nonalcoholic fatty liver disease in China. Hepatology, 2012, 55, 327-328.	3.6	37
70	Adult-onset liver disease and hepatocellular carcinoma in S-adenosylhomocysteine hydrolase deficiency. Molecular Genetics and Metabolism, 2015, 116, 269-274.	0.5	37
71	Hepatic TM6SF2 Is Required for Lipidation of VLDL in a Pre-Golgi Compartment in Mice and Rats. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 879-899.	2.3	36
72	Homozygosity mapping identifies a bile acid biosynthetic defect in an adult with cirrhosis of unknown etiology. Hepatology, 2012, 55, 1139-1145.	3.6	34

#	Article	IF	CITATIONS
73	APOC3, Coronary Disease, and Complexities of Mendelian Randomization. Cell Metabolism, 2014, 20, 387-389.	7.2	34
74	Patatin-like phospholipase domain-containing 3 and the pathogenesis and progression of pediatric nonalcoholic fatty liver disease. Hepatology, 2010, 52, 1189-1192.	3.6	32
75	Sequences in the Nonconsensus Nucleotide-binding Domain of ABCG5/ABCG8 Required for Sterol Transport. Journal of Biological Chemistry, 2011, 286, 7308-7314.	1.6	29
76	High plasma levels of apo(a) fragments in Caucasians and Africanâ€Americans with endâ€stage renal disease: implications for plasma Lp(a) assay. Clinical Genetics, 1997, 52, 387-392.	1.0	18
77	Contribution of a genetic risk score to ethnic differences in fatty liver disease. Liver International, 2022, 42, 2227-2236.	1.9	16
78	Genetic and Metabolic Determinants of Plasma Levels of ANGPTL8. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1649-1667.	1.8	15
79	Hepatic triglyceride content in individuals with reduced intestinal cholesterol absorption due to variants in Nieman Pick C1-like 1. Hepatology, 2011, 54, 736-737.	3.6	2
80	Science, serendipity, and the single degree. Journal of Clinical Investigation, 2018, 128, 4218-4223.	3.9	2
81	Reply. Hepatology, 2016, 63, 677-677.	3.6	1
82	Missense variant in insulin receptor (Y1355H) segregates in family with fatty liver disease. Molecular Metabolism, 2021, 53, 101299.	3.0	1
83 _	Beth Levine M.D. Prize in Autophagy Research. Autophagy, 2021, 17, 2053-2053.	4.3	0 _