Wen-Tso Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/6559205/wen-tso-liu-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

172 10,650 56 99 g-index

177 13,242 7.7 6.3 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
172	Insights into the phylogeny and coding potential of microbial dark matter. <i>Nature</i> , 2013 , 499, 431-7	50.4	1484
171	Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. <i>Nature Biotechnology</i> , 2017 , 35, 725-731	44.5	648
170	Analysis of BIOLOG GN Substrate Utilization Patterns by Microbial Communities. <i>Applied and Environmental Microbiology</i> , 1998 , 64, 1220-5	4.8	315
169	Nanoparticles and their biological and environmental applications. <i>Journal of Bioscience and Bioengineering</i> , 2006 , 102, 1-7	3.3	287
168	Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. <i>ISME Journal</i> , 2015 , 9, 1710-22	11.9	232
167	Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 1251-8	4.8	201
166	Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane. <i>Environmental Science & Environmental Science & amp; Technology</i> , 2005 , 39, 7541-50	10.3	182
165	In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. <i>Environmental Microbiology</i> , 2001 , 3, 110-22	5.2	167
164	Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes. <i>Microbiology (United Kingdom)</i> , 2004 , 150, 3741-3748	2.9	163
163	Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. <i>PLoS ONE</i> , 2011 , 6, e25263	3.7	160
162	Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. <i>ISME Journal</i> , 2014 , 8, 541-551	11.9	159
161	Pyrosequencing analysis of bacterial biofilm communities in water meters of a drinking water distribution system. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 5631-5	4.8	157
160	Internal energy-based competition between polyphosphate- and glycogen-accumulating bacteria in biological phosphorus removal reactors Effect of PC feeding ratio. Water Research, 1997, 31, 1430-1438	12.5	157
159	Pyrosequencing reveals bacterial communities in unchlorinated drinking water distribution system: an integral study of bulk water, suspended solids, loose deposits, and pipe wall biofilm. <i>Environmental Science & Discourse (March 2014)</i> , 2014 , 48, 5467-76	10.3	149
158	Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. <i>ISME Journal</i> , 2016 , 10, 2478-87	11.9	146
157	Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. <i>Microbiology (United Kingdom)</i> , 2001 , 147, 373-382	2.9	136
156	Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic-aerobic activated sludge processes. <i>Environmental Microbiology</i> , 2002 , 4, 753-7	5.2	127

(2009-2014)

155	Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant. <i>Water Research</i> , 2014 , 62, 40-52	12.5	126
154	Optimization of an oligonucleotide microchip for microbial identification studies: a non-equilibrium dissociation approach. <i>Environmental Microbiology</i> , 2001 , 3, 619-29	5.2	125
153	Microbial community dynamics during start-up of acidogenic anaerobic reactors. <i>Water Research</i> , 2002 , 36, 3203-10	12.5	121
152	Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 597-8	4.8	119
151	Phylogeny and physiology of candidate phylum \$\text{AtribacteriaS}(OP9/JS1) inferred from cultivation-independent genomics. <i>ISME Journal</i> , 2016 , 10, 273-86	11.9	118
150	Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. <i>Aquaculture</i> , 2016 , 454, 72-80	4.4	116
149	IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses. <i>Nucleic Acids Research</i> , 2017 , 45, D457-D465	20.1	115
148	A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. <i>Water Research</i> , 2013 , 47, 3015-25	12.5	115
147	In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. <i>Water Research</i> , 2005 , 39, 2901-14	12.5	114
146	Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2002 , 52, 883-887	2.2	114
145	Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. <i>Water Research</i> , 1996 , 30, 75-82	12.5	113
144	The nexus of syntrophy-associated microbiota in anaerobic digestion revealed by long-term enrichment and community survey. <i>Environmental Microbiology</i> , 2015 , 17, 1707-20	5.2	111
143	Microbial community dynamics of an urban drinking water distribution system subjected to phases of chloramination and chlorination treatments. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 7856-	65 8	105
142	Drinking water microbiome assembly induced by water stagnation. <i>ISME Journal</i> , 2018 , 12, 1520-1531	11.9	101
141	Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content. <i>Journal of Bioscience and Bioengineering</i> , 1994 , 77, 535-540		100
140	Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium. <i>ISME Journal</i> , 2011 , 5, 122-30	11.9	99
139	Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach. <i>Applied Microbiology and Biotechnology</i> , 2004 , 63, 466-73	5.7	98
138	Quantitative effects of position and type of single mismatch on single base primer extension. Journal of Microbiological Methods, 2009 , 77, 267-75	2.8	97

137	Characterization of microbial community in granular sludge treating brewery wastewater. <i>Water Research</i> , 2002 , 36, 1767-75	12.5	92
136	Impact of silver nanoparticles on natural marine biofilm bacteria. <i>Chemosphere</i> , 2011 , 85, 961-6	8.4	90
135	Community structure analysis of reverse osmosis membrane biofilms and the significance of Rhizobiales bacteria in biofouling. <i>Environmental Science & Environmental Science &</i>	10.3	85
134	Environmental microbiology-on-a-chip and its future impacts. <i>Trends in Biotechnology</i> , 2005 , 23, 174-9	15.1	77
133	Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. <i>Environmental Microbiology</i> , 2012 , 14, 441-52	5.2	76
132	Core-satellite populations and seasonality of water meter biofilms in a metropolitan drinking water distribution system. <i>ISME Journal</i> , 2016 , 10, 582-95	11.9	73
131	Microbial community structure in a thermophilic anaerobic hybrid reactor degrading terephthalate. <i>Microbiology (United Kingdom)</i> , 2004 , 150, 3429-40	2.9	72
130	Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant. <i>Water Research</i> , 2018 , 128, 278-285	12.5	71
129	Comparative analysis of fecal microbiota in infants with and without eczema. <i>PLoS ONE</i> , 2010 , 5, e9964	3.7	71
128	Roles of ionic strength and biofilm roughness on adhesion kinetics of Escherichia coli onto groundwater biofilm grown on PVC surfaces. <i>Water Research</i> , 2013 , 47, 2531-42	12.5	70
127	Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells. <i>Lab on A Chip</i> , 2004 , 4, 337-41	7.2	69
126	Role of biofilm roughness and hydrodynamic conditions in Legionella pneumophila adhesion to and detachment from simulated drinking water biofilms. <i>Environmental Science & Environmental Science & En</i>	10.3	67
125	Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. <i>Water Research</i> , 2008 , 42, 1963-76	12.5	67
124	Responses of Bacterial Communities to Simulated Climate Changes in Alpine Meadow Soil of the Qinghai-Tibet Plateau. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 6070-7	4.8	66
123	Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity. <i>Scientific Reports</i> , 2016 , 6, 34090	4.9	64
122	Operation-driven heterogeneity and overlooked feed-associated populations in global anaerobic digester microbiome. <i>Water Research</i> , 2017 , 124, 77-84	12.5	64
121	Determination of virus abundance, diversity and distribution in a municipal wastewater treatment plant. <i>Water Research</i> , 2009 , 43, 1101-9	12.5	63
120	Microfluidic device as a new platform for immunofluorescent detection of viruses. <i>Lab on A Chip</i> , 2005 , 5, 1327-30	7.2	62

(2005-2001)

Structure of microbial communities in activated sludge: potential implications for assessing the biodegradability of chemicals. <i>Ecotoxicology and Environmental Safety</i> , 2001 , 49, 40-53	7	59
Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. <i>Water Research</i> , 2014 , 49, 251-64	12.5	56
Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. <i>Nature Communications</i> , 2017 , 8, 1507	17.4	56
The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron flow. <i>Environmental Microbiology</i> , 2015 , 17, 4861-72	5.2	55
Complete Nutrient Removal Coupled to Nitrous Oxide Production as a Bioenergy Source by Denitrifying Polyphosphate-Accumulating Organisms. <i>Environmental Science & Environmental Science & Environment</i>	10.3	54
Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 73-82	4.8	53
Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors. <i>Water Research</i> , 2018 , 147, 403-412	12.5	52
Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. <i>Microbiology (United Kingdom)</i> , 2000 , 146 (Pt 5), 1099-1107	2.9	51
Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. <i>Environmental Microbiology</i> , 2014 , 16, 1695-708	5.2	46
Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. <i>Analytica Chimica Acta</i> , 2006 , 556, 171-7	6.6	45
Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. <i>Environmental Science & Environmental Science & Environ</i>	10.3	44
Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess. <i>Water Research</i> , 2019 , 155, 275-287	12.5	43
Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination. <i>Water Research</i> , 2016 , 88, 337-345	12.5	41
Silicon nanopillar substrates for enhancing signal intensity in DNA microarrays. <i>Biosensors and Bioelectronics</i> , 2008 , 24, 723-8	11.8	41
Tracing fecal pollution sources in karst groundwater by Bacteroidales genetic biomarkers, bacterial indicators, and environmental variables. <i>Science of the Total Environment</i> , 2014 , 490, 1082-90	10.2	40
Relative abundance of Bacteroides spp. in stools and wastewaters as determined by hierarchical oligonucleotide primer extension. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2882-93	4.8	40
Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms. <i>Microbes and Environments</i> , 2012 , 27, 9-18	2.6	38
Emission characteristics of fluorescent labels with respect to temperature changes and subsequent effects on DNA microchip studies. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 6453-7	4.8	38
	biodegradability of chemicals. <i>Ecotoxicology and Environmental Safety</i> , 2001, 49, 40-53 Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. <i>Water Research</i> , 2014, 49, 251-64 Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. <i>Nature Communications</i> , 2017, 8, 1507 The genome of Syntrophorhabdus aromaticworans strain Ul provides new insights for syntrophic aromatic compound metabolism and electron flow. <i>Environmental Microbiology</i> , 2015, 17, 4861-72 Complete Nutrient Removal Coupled to Nitrous Oxide Production as a Bioenergy Source by Denitrifying Polyphosphate-Accumulating Organisms. <i>Environmental Science & Denitrifying Polyphosphate-Accumulating Organisms</i> . <i>Environmental Science & Denitrifying</i> , 2007, 73, 73-82 Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors. <i>Water Research</i> , 2018, 147, 403-412 Microbial community changes in biological phosphate-removal systems on altering studge phosphorus content. <i>Microbiology (United Kingdom)</i> , 2000, 146 (Pt. 5), 1099-1107 Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. <i>Environmental Microbiology</i> , 2014, 16, 1695-708 Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. <i>Analytica Chimica Acta</i> , 2006, 556, 171-7 Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. <i>Environmental Science & Denitrify Communical Microbiology</i> , 2015, 50, 1779-87 M	Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process. Water Research, 2014, 49, 251-64 Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nature Communications, 2017, 8, 1507 The genome of Syntrophorhabdus aromaticivorans strain UI provides new insights for syntrophic aromatic compound metabolism and electron Row. Environmental Microbiology, 2015, 17, 4861-72 Complete Nutrient Removal Coupled to Nitrous Oxide Production as a Bioenergy Source by Denitrifying Polyphosphate-Accumulating Organisms. Environmental Science & Amp; Technology, 2017, 51, 4S31-4540 Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Applied and Environmental Microbiology, 2007, 73, 73-82 Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors. Water Research, 2018, 147, 403-412 Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiology (United Kingdom), 2000, 146 (Pt-5), 1099-1107 Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environmental Microbiology, 2014, 16, 1695-708 Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Analytica Chimica Acta, 2006, 556, 171-7 Response of Simulated Drinking Water Biofilm Mechanical and Structural Properties to Long-Term Disinfectant Exposure. Environmental Science & Amp; Technology, 2016, 50, 1779-87 Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess. Water Research, 2019, 155, 275-287 Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination. Water Res

101	Distribution comparison and risk assessment of free-floating and particle-attached bacterial pathogens in urban recreational water: Implications for water quality management. <i>Science of the Total Environment</i> , 2018 , 613-614, 428-438	10.2	36
100	Characterization of a 4-methylbenzoate-degrading methanogenic consortium as determined by small-subunit rDNA sequence analysis. <i>Journal of Bioscience and Bioengineering</i> , 2001 , 91, 449-455	3.3	36
99	A new biological phosphorus removal process in association with sulfur cycle. <i>Water Research</i> , 2013 , 47, 3057-69	12.5	35
98	Characterization of active microbes in a full-scale anaerobic fluidized bed reactor treating phenolic wastewater. <i>Microbes and Environments</i> , 2009 , 24, 144-53	2.6	35
97	Diversity of bacterioplankton in contrasting Tibetan lakes revealed by high-density microarray and clone library analysis. <i>FEMS Microbiology Ecology</i> , 2013 , 86, 277-87	4.3	33
96	A spatially addressable bead-based biosensor for simple and rapid DNA detection. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 803-10	11.8	33
95	Effects of hydraulic retention time on aerobic granulation and granule growth kinetics at steady state with a fast start-up strategy. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 469-77	5.7	31
94	Enrichment and characterization of microbial consortia degrading soluble microbial products discharged from anaerobic methanogenic bioreactors. <i>Water Research</i> , 2016 , 90, 395-404	12.5	31
93	Quantitative detection of culturable methanogenic archaea abundance in anaerobic treatment systems using the sequence-specific rRNA cleavage method. <i>ISME Journal</i> , 2009 , 3, 522-35	11.9	31
92	Miniaturized platforms for the detection of single-nucleotide polymorphisms. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 386, 427-34	4.4	31
91	Microbial succession of glycogen accumulating organisms in an anaerobic-aerobic membrane bioreactor with no phosphorus removal. <i>Water Science and Technology</i> , 2006 , 54, 29-37	2.2	31
90	Ecophysiology of Defluviicoccus-related tetrad-forming organisms in an anaerobic-aerobic activated sludge process. <i>Environmental Microbiology</i> , 2007 , 9, 1485-96	5.2	30
89	Biological filtration limits carbon availability and affects downstream biofilm formation and community structure. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5702-12	4.8	30
88	A Single-Granule-Level Approach Reveals Ecological Heterogeneity in an Upflow Anaerobic Sludge Blanket Reactor. <i>PLoS ONE</i> , 2016 , 11, e0167788	3.7	30
87	Impact of drinking water treatment and distribution on the microbiome continuum: an ecological disturbances perspective. <i>Environmental Microbiology</i> , 2017 , 19, 3163-3174	5.2	29
86	Community and proteomic analysis of methanogenic consortia degrading terephthalate. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 105-12	4.8	28
85	Drinking Water Microbiome Project: Is it Time?. <i>Trends in Microbiology</i> , 2019 , 27, 670-677	12.4	27
84	Characterization of bacterial community dynamics in a full-scale drinking water treatment plant. Journal of Environmental Sciences, 2017 , 51, 21-30	6.4	27

83	Effects of heat shocks on microbial community structure and microbial activity of a methanogenic enrichment degrading benzoate. <i>Letters in Applied Microbiology</i> , 2016 , 63, 356-362	2.9	26
82	Metagenomic characterization of C andidatus Defluviicoccus tetraformis strain TFO71\$ a tetrad-forming organism, predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal. <i>Environmental Microbiology</i> , 2014 , 16, 2739-51	5.2	26
81	Quantitative multiplexing analysis of PCR-amplified ribosomal RNA genes by hierarchical oligonucleotide primer extension reaction. <i>Nucleic Acids Research</i> , 2007 , 35, e82	20.1	26
80	Enhanced microfiltration devices configured with hydrodynamic trapping and a rain drop bypass filtering architecture for microbial cells detection. <i>Lab on A Chip</i> , 2008 , 8, 830-3	7.2	24
79	Rapid discrimination of single-nucleotide mismatches using a microfluidic device with monolayered beads. <i>Analytica Chimica Acta</i> , 2007 , 582, 295-303	6.6	24
78	Comparison of Particle-Associated Bacteria from a Drinking Water Treatment Plant and Distribution Reservoirs with Different Water Sources. <i>Scientific Reports</i> , 2016 , 6, 20367	4.9	24
77	Effect of Disinfectant Exposure on Legionella pneumophila Associated with Simulated Drinking Water Biofilms: Release, Inactivation, and Infectivity. <i>Environmental Science & Environmental Science & </i>	10.3	23
76	A call for standardized classification of metagenome projects. <i>Environmental Microbiology</i> , 2010 , 12, 1803-5	5.2	23
75	Evaluating single-base-pair discriminating capability of planar oligonucleotide microchips using a non-equilibrium dissociation approach. <i>Environmental Microbiology</i> , 2004 , 6, 1197-202	5.2	23
74	Metagenomics Reveals a Novel Virophage Population in a Tibetan Mountain Lake. <i>Microbes and Environments</i> , 2016 , 31, 173-7	2.6	21
73	MS2 bacteriophage reduction and microbial communities in biosand filters. <i>Environmental Science & Environmental Science</i>	10.3	21
72	Thermodynamically diverse syntrophic aromatic compound catabolism. <i>Environmental Microbiology</i> , 2017 , 19, 4576-4586	5.2	21
71	Impact of chloramination on the development of laboratory-grown biofilms fed with filter-pretreated groundwater. <i>Microbes and Environments</i> , 2013 , 28, 50-7	2.6	21
70	A high-throughput and quantitative hierarchical oligonucleotide primer extension (HOPE)-based approach to identify sources of faecal contamination in water bodies. <i>Environmental Microbiology</i> , 2009 , 11, 1672-81	5.2	21
69	Denaturing gradient gel electrophoresis polymorphism for rapid 16S rDNA clone screening and microbial diversity study. <i>Journal of Bioscience and Bioengineering</i> , 2002 , 93, 101-103	3.3	21
68	Kineosphaera limosa gen. nov., sp. nov., a novel Gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activated sludge. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2002 , 52, 1845-1849	2.2	21
67	The application of molecular tools to study the drinking water microbiome © urrent understanding and future needs. <i>Critical Reviews in Environmental Science and Technology</i> , 2019 , 49, 1188-1235	11.1	20
66	Effect of divalent ions and a polyphosphate on composition, structure, and stiffness of simulated drinking water biofilms. <i>Npj Biofilms and Microbiomes</i> , 2018 , 4, 15	8.2	20

65	Microbial community analysis of anaerobic reactors treating soft drink wastewater. <i>PLoS ONE</i> , 2015 , 10, e0119131	3.7	20
64	Assessing the transition effects in a drinking water distribution system caused by changing supply water quality: an indirect approach by characterizing suspended solids. <i>Water Research</i> , 2020 , 168, 1151	1 53 .5	20
63	Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria. <i>Microbes and Environments</i> , 2016 , 31, 288-92	2.6	19
62	Quantifying the contribution of microbial immigration in engineered water systems. <i>Microbiome</i> , 2019 , 7, 144	16.6	19
61	Genomic composition and dynamics among Methanomicrobiales predict adaptation to contrasting environments. <i>ISME Journal</i> , 2017 , 11, 87-99	11.9	19
60	Isolation, characterization and identification of polyhydroxyalkanoate-accumulating bacteria from activated sludge. <i>Journal of Bioscience and Bioengineering</i> , 2000 , 90, 494-500	3.3	19
59	Impacts of biostimulation and bioaugmentation on the performance and microbial ecology in methanogenic reactors treating purified terephthalic acid wastewater. <i>Water Research</i> , 2017 , 122, 308-	3 ¹ 16 ⁵	18
58	Ugly ducklings-the dark side of plastic materials in contact with potable water. <i>Npj Biofilms and Microbiomes</i> , 2018 , 4, 7	8.2	18
57	Microbial population dynamics of granular aerobic sequencing batch reactors during start-up and steady state periods. <i>Water Science and Technology</i> , 2010 , 62, 1281-7	2.2	18
56	East Tibetan lakes harbour novel clusters of picocyanobacteria as inferred from the 16S-23S rRNA internal transcribed spacer sequences. <i>Microbial Ecology</i> , 2010 , 59, 614-22	4.4	18
55	Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes. <i>Microbiome</i> , 2020 , 8, 16	16.6	17
54	Nexus of Stochastic and Deterministic Processes on Microbial Community Assembly in Biological Systems. <i>Frontiers in Microbiology</i> , 2019 , 10, 1536	5.7	17
53	Draft Genome Sequence of Syntrophorhabdus aromaticivorans Strain UI, a Mesophilic Aromatic Compound-Degrading Syntroph. <i>Genome Announcements</i> , 2014 , 2,		17
52	DNA Microarray Technology in Microbial Ecology Studies-Principle, Applications and Current Limitations <i>Microbes and Environments</i> , 2003 , 18, 175-187	2.6	17
51	Tetrasphaera elongata sp. nov., a polyphosphate-accumulating bacterium isolated from activated sludge. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2002 , 52, 883-887	2.2	17
50	Superior resolution characterisation of microbial diversity in anaerobic digesters using full-length 16S rRNA gene amplicon sequencing. <i>Water Research</i> , 2020 , 178, 115815	12.5	17
49	Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism. <i>Environmental Microbiology</i> , 2018 , 20, 4503-4511	5.2	16
48	Rapid lab-on-a-chip profiling of human gut bacteria. <i>Journal of Microbiological Methods</i> , 2008 , 72, 82-90	2.8	16

(2021-2015)

47	Phenotypic and Phylogenetic Identification of Coliform Bacteria Obtained Using 12 Coliform Methods Approved by the U.S. Environmental Protection Agency. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 6012-23	4.8	15	
46	360-Degree Distribution of Biofilm Quantity and Community in an Operational Unchlorinated Drinking Water Distribution Pipe. <i>Environmental Science & Environmental Science & E</i>	10.3	15	
45	Cell loss in integrated microfluidic device. <i>Biomedical Microdevices</i> , 2007 , 9, 745-50	3.7	15	
44	Characterization of a 4-methylbenzoate-degrading methanogenic consortium as determined by small-subunit rDNA sequence analysis. <i>Journal of Bioscience and Bioengineering</i> , 2001 , 91, 449-55	3.3	15	
43	Immobilization of selenite via two parallel pathways during in situ bioremediation. <i>Environmental Science & Environmental & E</i>	10.3	14	
42	Warming counteracts grazing effects on the functional structure of the soil microbial community in a Tibetan grassland. <i>Soil Biology and Biochemistry</i> , 2019 , 134, 113-121	7.5	14	
41	Coupling growth kinetics modeling with machine learning reveals microbial immigration impacts and identifies key environmental parameters in a biological wastewater treatment process. <i>Microbiome</i> , 2019 , 7, 65	16.6	13	
40	Co-occurrence network analysis reveals thermodynamics-driven microbial interactions in methanogenic bioreactors. <i>Environmental Microbiology Reports</i> , 2018 , 10, 673-685	3.7	12	
39	Recent advances in molecular techniques for the detection of phylogenetic markers and functional genes in microbial communities. <i>FEMS Microbiology Letters</i> , 2007 , 275, 183-90	2.9	12	
38	Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 1843-1852	5.7	11	
37	Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community. <i>Biofouling</i> , 2014 , 30, 813-21	3.3	11	
36	Immune-modulatory genomic properties differentiate gut microbiota of infants with and without eczema. <i>PLoS ONE</i> , 2017 , 12, e0184955	3.7	11	
35	Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses. <i>Microbiome</i> , 2020 , 8, 111	16.6	11	
34	Benefits of Genomic Insights and CRISPR-Cas Signatures to Monitor Potential Pathogens across Drinking Water Production and Distribution Systems. <i>Frontiers in Microbiology</i> , 2017 , 8, 2036	5.7	10	
33	Saliva-based diagnostics using 16S rRNA microarrays and microfluidics. <i>Annals of the New York Academy of Sciences</i> , 2007 , 1098, 345-61	6.5	10	
32	Biogeography of bacterioplankton in the tropical seawaters of Singapore. <i>FEMS Microbiology Ecology</i> , 2013 , 84, 259-69	4.3	9	
31	LabArray: real-time imaging and analytical tool for microarrays. <i>Bioinformatics</i> , 2005 , 21, 689-90	7.2	9	
30	Ecology and molecular targets of hypermutation in the global microbiome. <i>Nature Communications</i> , 2021 , 12, 3076	17.4	9	

29	Draft Genome Sequence of a Novel SAR11 Clade Species Abundant in a Tibetan Lake. <i>Genome Announcements</i> , 2014 , 2,		8
28	Metagenomic and Metatranscriptomic Analyses Revealed Uncultured Bacteroidales Populations as the Dominant Proteolytic Amino Acid Degraders in Anaerobic Digesters. <i>Frontiers in Microbiology</i> , 2020 , 11, 593006	5.7	8
27	Diversity and geochemical community assembly processes of the living rare biosphere in a sand-and-gravel aquifer ecosystem in the Midwestern United States. <i>Scientific Reports</i> , 2019 , 9, 13484	4.9	7
26	Direct treatment of high-strength soft drink wastewater using a down-flow hanging sponge reactor: performance and microbial community dynamics. <i>Applied Microbiology and Biotechnology</i> , 2017 , 101, 5925-5936	5.7	7
25	Complete Genome Sequence of the Intracellular Bacterial Symbiont TC1 in the Anaerobic Ciliate Trimyema compressum. <i>Genome Announcements</i> , 2016 , 4,		6
24	Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes. <i>Water Science and Technology</i> , 2009 , 59, 1901-9	2.2	6
23	Spatially addressable bead-based biosensor for rapid detection of beta-thalassemia mutations. <i>Analytica Chimica Acta</i> , 2010 , 658, 193-6	6.6	6
22	Ecology and molecular targets of hypermutation in the global microbiome		6
21	Fabrication of three-dimensional hemispherical structures using photolithography. <i>Microfluidics and Nanofluidics</i> , 2009 , 7, 721-726	2.8	5
20	Technology development to explore the relationship between oral health and the oral microbial community. <i>BMC Oral Health</i> , 2006 , 6 Suppl 1, S10	3.7	5
19	Microbial Community Involved in Anaerobic Purified Terephthalic Acid Treatment Process 2015 , 31-48		4
18	Identifying anaerobic amino acids degraders through the comparison of short-term and long-term enrichments. <i>Environmental Microbiology Reports</i> , 2020 , 12, 173-184	3.7	4
17	Hierarchical oligonucleotide primer extension as a time- and cost-effective approach for quantitative determination of Bifidobacterium spp. in infant feces. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 2573-6	4.8	4
16	Proliferation of glycogen accumulating organisms induced by Fe(III) dosing in a domestic wastewater treatment plant. <i>Water Science and Technology</i> , 2006 , 54, 101-9	2.2	4
15	Draft Genome Sequence of Syntrophomonas wolfei subsp. methylbutyratica Strain 4J5T (JCM 14075), a Mesophilic Butyrate- and 2-Methylbutyrate-Degrading Syntroph. <i>Genome Announcements</i> , 2016 , 4,		4
14	Complete Genome Sequence of Methanoregula formicica SMSPT, a Mesophilic Hydrogenotrophic Methanogen Isolated from a Methanogenic Upflow Anaerobic Sludge Blanket Reactor. <i>Genome Announcements</i> , 2014 , 2,		3
13	Full-scale use of glycogen-accumulating organisms for excess biological carbon removal. <i>Water Environment Research</i> , 2011 , 83, 855-64	2.8	3
12	Denaturing Gradient Gel Electrophoresis Polymorphism for Rapid 16S rDNA Clone Screening and Microbial Diversity Study <i>Journal of Bioscience and Bioengineering</i> , 2002 , 93, 101-103	3.3	3

LIST OF PUBLICATIONS

11	Bacterial enrichment in highly-selective acetate-fed bioreactors and its application in rapid biofilm formation. <i>Water Research</i> , 2020 , 170, 115359	12.5	3
10	Evolution and adaptation of SAR11 and Cyanobium in a saline Tibetan lake. <i>Environmental Microbiology Reports</i> , 2016 , 8, 595-604	3.7	3
9	Complete Genome Sequence of Methanolinea tarda NOBI-1T, a Hydrogenotrophic Methanogen Isolated from Methanogenic Digester Sludge. <i>Genome Announcements</i> , 2014 , 2,		2
8	Isolation, Characterization and Identification of Polyhydroxyalkanoate-Accumulating Bacteria from Activated Sludge <i>Journal of Bioscience and Bioengineering</i> , 2000 , 90, 494-500	3.3	1
7	Relative Importance of Stochastic Assembly Process of Membrane Biofilm Increased as Biofilm Aged. <i>Frontiers in Microbiology</i> , 2021 , 12, 708531	5.7	1
6	Assessing the contribution of biofilm to bacterial growth during stagnation in shower hoses. <i>Water Science and Technology: Water Supply</i> , 2020 , 20, 2564-2576	1.4	O
5	Ecogenomics-Based Mass Balance Model Reveals the Effects of Fermentation Conditions on Microbial Activity. <i>Frontiers in Microbiology</i> , 2020 , 11, 595036	5.7	O
4	Disentangling the syntrophic electron transfer mechanisms of Candidatus geobacter eutrophica through electrochemical stimulation and machine learning. <i>Scientific Reports</i> , 2021 , 11, 15140	4.9	O
3	Development and Application of Anaerobic Technology for the Treatment of Chemical Effluents in Taiwan 2015 , 243-262		
2	Microbial diversity and metagenomics insights of terephthalate-degrading methanogenic processes. <i>Journal of Biotechnology</i> , 2008 , 136, S603-S604	3.7	

The Family Dermatophilaceae **2014**, 317-325