Stefan Doerr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6559171/publications.pdf Version: 2024-02-01

STEEAN DOEDD

#	Article	IF	CITATIONS
1	Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 2000, 51, 33-65.	4.0	1,288
2	Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews, 2006, 74, 269-307.	4.0	923
3	Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 2014, 130, 103-127.	4.0	434
4	Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150345.	1.8	383
5	On standardizing the â€~Water Drop Penetration Time' and the â€~Molarity of an Ethanol Droplet' techniques to classify soil hydrophobicity: A case study using medium textured soils. , 1998, 23, 663-668.		354
6	The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology, 2000, 231-232, 134-147.	2.3	347
7	Water Repellency and Critical Soil Water Content in a Dune Sand. Soil Science Society of America Journal, 2001, 65, 1667-1674.	1.2	292
8	The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 2008, 74, 256-263.	2.2	291
9	Hydrophobicity and aggregate stability in calcareous topsoils from fire-affected pine forests in southeastern Spain. Geoderma, 2004, 118, 77-88.	2.3	286
10	Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation. International Journal of Wildland Fire, 2005, 14, 423.	1.0	267
11	Towards a global assessment of pyrogenic carbon from vegetation fires. Global Change Biology, 2016, 22, 76-91.	4.2	256
12	Effects of differing wildfire severities on soil wettability and implications for hydrological response. Journal of Hydrology, 2006, 319, 295-311.	2.3	246
13	The erosional impact of soil hydrophobicity: current problems and future research directions. Journal of Hydrology, 2000, 231-232, 178-191.	2.3	238
14	Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle. Global Change Biology, 2015, 21, 1621-1633.	4.2	214
15	Soil wettability, runoff and erodibility of major dryâ€Mediterranean land use types on calcareous soils. Hydrological Processes, 2007, 21, 2325-2336.	1.1	212
16	Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. European Journal of Soil Science, 2006, 57, 741-754.	1.8	197
17	SPATIAL VARIABILITY OF SOIL HYDROPHOBICITY IN FIRE-PRONE EUCALYPTUS AND PINE FORESTS, PORTUGAL. Soil Science, 1998, 163, 313-324.	0.9	196
18	Global and Regional Trends and Drivers of Fire Under Climate Change. Reviews of Geophysics, 2022, 60,	9.0	182

#	Article	IF	CITATIONS
19	Soil hydrophobicity variations with depth and particle size fraction in burned and unburned Eucalyptus globulus and Pinus pinaster forest terrain in the Ãgueda Basin, Portugal. Catena, 1996, 27, 25-47.	2.2	178
20	Fire effects on soils: the human dimension. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150171.	1.8	166
21	Soil water repellency as a potential parameter in rainfall-runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrological Processes, 2003, 17, 363-377.	1.1	151
22	Global fire emissions buffered by the production of pyrogenic carbon. Nature Geoscience, 2019, 12, 742-747.	5.4	140
23	Quantifying the impact of soil water repellency on overland flow generation and erosion: a new approach using rainfall simulation and wetting agent on <i>in situ</i> soil. Hydrological Processes, 2007, 21, 2337-2345.	1.1	131
24	Extraction of compounds associated with water repellency in sandy soils of different origin. Soil Research, 2005, 43, 225.	0.6	130
25	The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma, 2011, 160, 599-607.	2.3	127
26	Heating effects on water repellency in Australian eucalypt forest soils and their value in estimating wildfire soil temperatures. International Journal of Wildland Fire, 2004, 13, 157.	1.0	125
27	Hydrological implications of soil water-repellency in Eucalyptus globulus forests, north-central Portugal. Journal of Hydrology, 2000, 231-232, 165-177.	2.3	108
28	Distinctiveness of wildfire effects on soil erosion in south-east Australian eucalypt forests assessed in a global context. Forest Ecology and Management, 2007, 238, 347-364.	1.4	107
29	Temporal variation in topsoil water repellency in two recently burnt eucalypt stands in north-central Portugal. Catena, 2008, 74, 192-204.	2.2	101
30	Organic compounds at different depths in a sandy soil and their role in water repellency. Soil Research, 2005, 43, 239.	0.6	99
31	Livestock grazing alters multiple ecosystem properties and services in salt marshes: a metaâ€analysis. Journal of Applied Ecology, 2017, 54, 1395-1405.	1.9	96
32	Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Scientific Reports, 2017, 7, 11233.	1.6	93
33	Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma, 2012, 191, 14-23.	2.3	92
34	Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers. Geomorphology, 2009, 104, 105-116.	1.1	90
35	Fallout radionuclide tracers identify a switch in sediment sources and transport-limited sediment yield following wildfire in a eucalypt forest. Geomorphology, 2009, 110, 140-151.	1.1	88
36	Temporal dynamics of water repellency and soil moisture in eucalypt plantations, Portugal. Soil Research, 2005, 43, 269.	0.6	87

#	Article	IF	CITATIONS
37	Forest floor chemical transformations in a boreal forest fire and their correlations with temperature and heating duration. Geoderma, 2016, 264, 71-80.	2.3	84
38	The role of fire in UK peatland and moorland management: the need for informed, unbiased debate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150342.	1.8	78
39	Thermal destruction of soil water repellency and associated changes to soil organic matter as observed by FTIR spectroscopy. Catena, 2008, 74, 205-211.	2.2	76
40	Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics. Journal of Hydrology, 2018, 556, 211-219.	2.3	75
41	Water repellence of soils: new insights and emerging research needs. Hydrological Processes, 2007, 21, 2223-2228.	1.1	74
42	Fire effects on soil system functioning: new insights and future challenges. International Journal of Wildland Fire, 2005, 14, 339.	1.0	73
43	Water repellency of soils. Soil Science Society of America Journal, 2002, 66, 401-405.	1.2	72
44	Prescribed fire and its impacts on ecosystem services in the UK. Science of the Total Environment, 2018, 624, 691-703.	3.9	71
45	Fires prime terrestrial organic carbon for riverine export to the global oceans. Nature Communications, 2020, 11, 2791.	5.8	71
46	Hydrological effects of soil water repellency: on spatial and temporal uncertainties. Hydrological Processes, 2004, 18, 829-832.	1.1	70
47	Magnetic enhancement in wildfire-affected soil and its potential for sediment-source ascription. Earth Surface Processes and Landforms, 2006, 31, 249-264.	1.2	70
48	â€~Natural background' soil water repellency in conifer forests of the north-western USA: Its prediction and relationship to wildfire occurrence. Journal of Hydrology, 2009, 371, 12-21.	2.3	69
49	Quantity, composition and water contamination potential of ash produced under different wildfire severities. Environmental Research, 2015, 142, 297-308.	3.7	69
50	Fire Severity, Water Repellency Characteristics and Hydrogeomorphological Changes Following the Christmas 2001 Sydney Forest Fires. Australian Geographer, 2003, 34, 147-175.	1.0	68
51	FT-IR spectroscopy reveals that ash water repellency is highly dependent on ash chemical composition. Catena, 2013, 108, 35-43.	2.2	68
52	Soil water repellency: Origin, assessment and geomorphological consequences. Catena, 2013, 108, 1-5.	2.2	66
53	Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations. Journal of Hydrology, 2010, 380, 104-111.	2.3	63
54	Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. European Journal of Soil Science, 2011, 62, 516-532.	1.8	62

#	Article	IF	CITATIONS
55	Effects of fire on the physicochemical properties of soil in a slash-and-burn agriculture. Catena, 2014, 122, 209-215.	2.2	62
56	Water repellency of soils. Soil Science Society of America Journal, 2002, 66, 401.	1.2	61
57	Contemporary versus long-term denudation along a passive plate margin: the role of extreme events. Earth Surface Processes and Landforms, 2007, 32, 1013-1031.	1.2	60
58	Assessing water contamination risk from vegetation fires: Challenges, opportunities and a framework for progress. Hydrological Processes, 2018, 32, 687-694.	1.1	60
59	Evaluation of different clay minerals as additives for soil water repellency alleviation. Applied Clay Science, 2006, 31, 238-248.	2.6	59
60	Critical conditions for the wetting of soils. Applied Physics Letters, 2006, 89, 094101.	1.5	59
61	Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. , 2006, , .		58
62	Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surface Processes and Landforms, 2013, 38, 1225-1233.	1.2	58
63	Spatial and temporal variations of water repellency and probability of its occurrence in calcareous Mediterranean rangeland soils affected by fires. Catena, 2013, 108, 14-25.	2.2	56
64	Self-organization of hydrophobic soil and granular surfaces. Applied Physics Letters, 2007, 90, 054110.	1.5	55
65	Effect of oxygen deprivation on soil hydrophobicity during heating. International Journal of Wildland Fire, 2005, 14, 449.	1.0	53
66	Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air, Soil and Water Research, 2021, 14, 117862212110281.	1.2	53
67	Reaction of soil water repellency to artificially induced changes in soil pH. Geoderma, 2010, 158, 375-384.	2.3	52
68	Consumption of residual pyrogenic carbon by wildfire. International Journal of Wildland Fire, 2013, 22, 1072.	1.0	52
69	Carbon loads, forms and sequestration potential within ash deposits produced by wildfire: new insights from the 2009 â€~Black Saturday' fires, Australia. European Journal of Forest Research, 2012, 131, 1245-1253.	1.1	51
70	Scientists' warning on extreme wildfire risks to water supply. Hydrological Processes, 2021, 35, e14086.	1.1	51
71	Effects of heating and post-heating equilibration times on soil water repellency. Soil Research, 2005, 43, 261.	0.6	50
72	Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency. European Journal of Soil Science, 2010, 61, 298-313.	1.8	49

#	Article	IF	CITATIONS
73	The role of naturally occurring organic compounds in causing soil water repellency. European Journal of Soil Science, 2013, 64, 667-680.	1.8	48
74	Temporal and spatial variations in topsoil water repellency throughout a cropâ€rotation cycle on sandy soil in northâ€central Portugal. Hydrological Processes, 2007, 21, 2317-2324.	1.1	46
75	The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain. Ecohydrology, 2010, 3, 392-401.	1.1	45
76	The nitrogen budget of laboratory-simulated western US wildfires during the FIREX 2016 Fire Lab study. Atmospheric Chemistry and Physics, 2020, 20, 8807-8826.	1.9	45
77	The temporal evolution of wildfire ash and implications for post-fire infiltration. International Journal of Wildland Fire, 2014, 23, 733.	1.0	44
78	Chemical composition of wildfire ash produced in contrasting ecosystems and its toxicity to Daphnia magna. International Journal of Wildland Fire, 2019, 28, 726.	1.0	44
79	Application of Thermal Analysis to Elucidate Waterâ€Repellency Changes in Heated Soils. Soil Science Society of America Journal, 2008, 72, 1-10.	1.2	42
80	The influence of wildfire on water quality and watershed processes: new insights and remaining challenges. International Journal of Wildland Fire, 2019, 28, 721.	1.0	42
81	Abundance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity. Geoderma, 2015, 245-246, 40-51.	2.3	41
82	Role of heavy polar organic compounds for water repellency of sandy soils. Environmental Chemistry Letters, 2004, 2, 35-39.	8.3	40
83	Living on a flammable planet: interdisciplinary, cross-scalar and varied cultural lessons, prospects and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150469.	1.8	39
84	Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Science of the Total Environment, 2018, 621, 1103-1114.	3.9	39
85	A ranking methodology for assessing relative erosion risk and its application todehesas andmontados in Spain and Portugal. Land Degradation and Development, 2002, 13, 129-140.	1.8	37
86	Effect of kaolinite and Ca-montmorillonite on the alleviation of soil water repellency. Plant, Soil and Environment, 2004, 50, 358-363.	1.0	36
87	Fire as a Removal Mechanism of Pyrogenic Carbon From the Environment: Effects of Fire and Pyrogenic Carbon Characteristics. Frontiers in Earth Science, 2018, 6, .	0.8	36
88	Karst-like landforms and hydrology in quartzites of the Venezuelan Guyana shield: Pseudokarst or "real" karst?. Zeitschrift FA¼r Geomorphologie, 1999, 43, 1-17.	0.3	36
89	Soil Water Repellency. , 2009, , 197-223.		35
90	Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Communications Earth & Environment, 2020, 1, .	2.6	34

#	Article	IF	CITATIONS
91	The role of tree stem proximity in the spatial variability of soil water repellency in a eucalypt plantation in coastal Portugal. Soil Research, 2005, 43, 251.	0.6	29
92	Environmentally persistent free radicals are ubiquitous in wildfire charcoals and remain stable for years. Communications Earth & Environment, 2021, 2, .	2.6	29
93	Transitions of waterâ€drop impact behaviour on hydrophobic and hydrophilic particles. European Journal of Soil Science, 2013, 64, 324-333.	1.8	27
94	Structural characteristics and behavior of fire-modified soil aggregates. Journal of Geophysical Research, 2007, 112, .	3.3	26
95	Effect of Particle Size on Droplet Infiltration into Hydrophobic Porous Media As a Model of Water Repellent Soil. Environmental Science & Technology, 2011, 45, 9666-9670.	4.6	26
96	Effects of prescribed fire on surface soil in a Pinus pinaster plantation, northern Portugal. Environmental Earth Sciences, 2015, 73, 3011-3018.	1.3	26
97	What Can Charcoal Reflectance Tell Us About Energy Release in Wildfires and the Properties of Pyrogenic Carbon?. Frontiers in Earth Science, 2018, 6, .	0.8	25
98	A global synthesis of fire effects on ecosystem services of forests and woodlands. Frontiers in Ecology and the Environment, 2022, 20, 170-178.	1.9	25
99	Investigation of Surface Properties of Soil Particles and Model Materials with Contrasting Hydrophobicity Using Atomic Force Microscopy. Environmental Science & Technology, 2009, 43, 6500-6506.	4.6	24
100	Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution. Atmospheric Chemistry and Physics, 2015, 15, 7929-7943.	1.9	24
101	Application of atomic force microscopy to the study of natural and model soil particles. Journal of Microscopy, 2008, 231, 384-394.	0.8	22
102	Hysteresis in the Soil Water Retention of a Sand–Clay Mixture with Contact Angles Lower than Ninety Degrees. Vadose Zone Journal, 2015, 14, 1-8.	1.3	21
103	Particulate emissions from large North American wildfires estimated using a new top-down method. Atmospheric Chemistry and Physics, 2017, 17, 6423-6438.	1.9	21
104	Size fractionation as a tool for separating charcoal of different fuel source and recalcitrance in the wildfire ash layer. Science of the Total Environment, 2017, 595, 461-471.	3.9	20
105	Effects of compaction on soil surface water repellency. Soil Use and Management, 2007, 23, 238-244.	2.6	19
106	Longevity of soil water repellency in a former wastewater disposal tree stand and potential amelioration. Geoderma, 2011, 165, 78-83.	2.3	19
107	Water repellency reduces soil CO2 efflux upon rewetting. Science of the Total Environment, 2020, 708, 135014.	3.9	19
108	Use of olive mill wastewater (OMW) to decrease hydrophobicity in sandy soil. Ecological Engineering, 2013, 58, 393-398.	1.6	18

7

#	Article	IF	CITATIONS
109	The effect of addition of a wettable biochar on soil water repellency. European Journal of Soil Science, 2015, 66, 1063-1073.	1.8	18
110	Replacing time with space: using laboratory fires to explore the effects of repeated burning on black carbon degradation. International Journal of Wildland Fire, 2016, 25, 242.	1.0	18
111	CO ₂ efflux from soils with seasonal water repellency. Biogeosciences, 2017, 14, 4781-4794.	1.3	17
112	The Role of Drop Volume and Number on Soil Water Repellency Determination. Soil Science Society of America Journal, 2013, 77, 1732-1743.	1.2	16
113	Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena, 2015, 135, 369-376.	2.2	16
114	The Relevance of Pyrogenic Carbon for Carbon Budgets From Fires: Insights From the FIREX Experiment. Global Biogeochemical Cycles, 2020, 34, e2020GB006647.	1.9	16
115	Designing tools to predict and mitigate impacts on water quality following the Australian 2019/2020 wildfires: Insights from Sydney's largest water supply catchment. Integrated Environmental Assessment and Management, 2021, 17, 1151-1161.	1.6	16
116	Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management. Global Change Biology, 2021, 27, 4181-4195.	4.2	16
117	Efectos de los incendios forestales en la vegetación y el suelo en la cuenca mediterránea: revisión bibliográfica. Boletin De La Asociacion De Geografos Espanoles, 2012, , .	0.2	16
118	Soxhlet extraction of organic compounds associated with soil water repellency. Environmental Chemistry Letters, 2004, 2, 41-44.	8.3	15
119	The potential of biochar to remove hydrophobic compounds from model sandy soils. Geoderma, 2017, 285, 132-140.	2.3	15
120	Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 157-167.	1.4	15
121	Postwildfire hydrological response in an El Niño–Southern Oscillation–dominated environment. Journal of Geophysical Research, 2008, 113, .	3.3	14
122	Effects of relative humidity on the water repellency of fire-affected soils. Catena, 2016, 138, 68-76.	2.2	14
123	The kinetics and energetics of transitions between water repellent and wettable soil conditions: a linear free energy analysis of the relationship between WDPT and MED/CST. Hydrological Processes, 2007, 21, 2248-2254.	1.1	13
124	Experimental characterization of the impact of temperature and humidity on the breakdown of soil water repellency in sandy soils and composts. Hydrological Processes, 2015, 29, 2065-2073.	1.1	13
125	Influence of Initial Water Content on the Wettability of Autoclaved Soils. Soil Science Society of America Journal, 2010, 74, 2086-2088.	1.2	12
126	The effect of water repellency on the short-term release of CO2 upon soil wetting. Geoderma, 2020, 375, 114481.	2.3	12

#	Article	IF	CITATIONS
127	Effects of Isopropanol/Ammonia Extraction on Soil Water Repellency as Determined by Atomic Force Microscopy. Soil Science Society of America Journal, 2010, 74, 1541-1552.	1.2	11
128	Origin and karst geomorphological significance of the enigmatic Australian Nullarbor Plain †̃blowholes'. Earth Surface Processes and Landforms, 2012, 37, 253-261.	1.2	11
129	Drop impact behaviour on alternately hydrophobic and hydrophilic layered bead packs. Chemical Engineering Research and Design, 2016, 110, 200-208.	2.7	11
130	Organic matter identifies the nano-mechanical properties of native soil aggregates. Nanoscale, 2018, 10, 520-525.	2.8	11
131	Post-fire soil hydrology, water erosion and restoration strategies in Andosols: a review of evidence from the Canary Islands (Spain). IForest, 2016, 9, 583-592.	0.5	11
132	Bioturbation on wildfire-affected southeast Australian hillslopes: Spatial and temporal variation. Catena, 2011, 87, 20-30.	2.2	10
133	Use of Clay Dispersed in Water for Decreasing Soil Water Repellency. Land Degradation and Development, 2017, 28, 328-334.	1.8	10
134	Modelling and quantifying the spatial distribution of post-wildfire ash loads. International Journal of Wildland Fire, 2016, 25, 249.	1.0	9
135	Repelencia al agua en suelos forestales afectados por incendios y en suelos agrÃcolas bajo distintos manejos y abandono. Cuadernos De Investigacion Geografica, 2012, 38, 53-74.	0.6	9
136	Thermal analysis as a predictor for hydrological parameters of fire-affected soils. Geoderma, 2014, 235-236, 240-249.	2.3	8
137	Wildfire-Derived Pyrogenic Carbon Modulates Riverine Organic Matter and Biofilm Enzyme Activities in an In Situ Flume Experiment. ACS ES&T Water, 2021, 1, 1648-1656.	2.3	8
138	Response of Calamagrostis angustifolia to burn frequency and seasonality in the Sanjiang Plain wetlands (Northeast China). Journal of Environmental Management, 2021, 300, 113759.	3.8	8
139	Hot-Water-Soluble Organic Compounds Related to Hydrophobicity in Sandy Soils. , 2014, , 137-146.		8
140	Hillslope soil erosion and bioturbation after the Christmas 2001 forest fires near Sydney, Australia , 2006, , 51-61.		8
141	Forest fire impacts on catchment hydrology: A critical review. Forest Ecology and Management, 2006, 234, S161.	1.4	7
142	Changes in organic compound composition in soil following heating to maximum soil water repellency under anoxic conditions. Environmental Chemistry, 2012, 9, 369.	0.7	7
143	Wildland fire ash enhances short-term CO2 flux from soil in a Southern African savannah. Soil Biology and Biochemistry, 2021, 160, 108334.	4.2	7
144	Effects of clay amendment on adsorption and desorption of copper in water repellent soils. Soil Research, 2005, 43, 397.	0.6	6

1

#	Article	IF	CITATIONS
145	Wettability decay in an oil-contaminated waste-mineral mixture with dry-wet cycles. Environmental Earth Sciences, 2015, 74, 2563-2569.	1.3	5
146	The peatland vegetation burning debate: keep scientific critique in perspective. A response to Brown et al . and Douglas et al Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160434.	1.8	5
147	Effectiveness of Polyacrylamide, Wood Shred Mulch, and Pine Needle Mulch as Post-Fire Hillslope Stabilization Treatments in Two Contrasting Volcanic Soils. Forests, 2017, 8, 247.	0.9	5
148	Lipid biomarkers and their environmental significance in mine soils from Eastern Europe. Archives of Agronomy and Soil Science, 2017, 63, 1697-1710.	1.3	4
149	Pyrene and nile red fluorescence probes for <i>inâ€situ</i> study of polarity and viscosity of soil organic coatings implicated in soil water repellency. European Journal of Soil Science, 2020, 71, 868-879.	1.8	4
150	On the cause and correction of the anomalously high contact angles measured on soils and granular materials. Geoderma, 2021, 391, 114973.	2.3	4
151	Informed debate on the use of fire for peatland management means acknowledging the complexity of socio-ecological systems. Nature Conservation, 0, 16, 59-77.	0.0	4
152	ProbFire: a probabilistic fire early warning system for Indonesia. Natural Hazards and Earth System Sciences, 2022, 22, 303-322.	1.5	4
153	TopCap: A Tool to Quantify Soil Surface Topology and Subsurface Structure. Vadose Zone Journal, 2018, 17, 1-10.	1.3	3
154	Pyrogenic organic matter produced during wildfires can act as a carbon sink – a reply to Billings & Schlesinger (2015). Global Change Biology, 2018, 24, e399.	4.2	2
155	No evidence of suitability of prophylactic fluids for wildfire prevention at landscape scales. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5103-5104.	3.3	2
156	Measuring water repellency of individual particles: The new "micro-Wilhelmy Plate Method―and its applicability to soil. Geoderma, 2020, 371, 114384.	2.3	2
157	Short- to medium-term effects of crown and surface fires on soil respiration in a Canadian boreal forest. Canadian Journal of Forest Research, 2022, 52, 591-604.	0.8	2
158	Using Thermogravimetry as a Simple Tool for Nutrient Assessment in Fire Affected Soils. Land Degradation and Development, 2017, 28, 1665-1674.	1.8	1
159	Wettability Assessment of an Oil Coated Soil. , 2012, , 415-421.		1
160	Twenty-five years of International Journal of Wildland Fire. International Journal of Wildland Fire, 2016, 25, i.	1.0	1
161	Tracing eroded soil in a burnt water supply catchment, Sydney, Australia: linking magnetic enhancement to soil water repellency , 2006, , 62-69.		1

Soil water retention of a compacted sandy clay with sub-critical water repellency., 2015, , 367-370.

#	Article	IF	CITATIONS
163	Thirty years of IJWF. International Journal of Wildland Fire, 2021, 30, i.	1.0	0
164	International Journal of Wildland Fire celebrates 20 years of publication. International Journal of Wildland Fire, 2012, 21, i.	1.0	0