Hui-Xiong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6558648/publications.pdf Version: 2024-02-01

HUL-XIONC XIL

#	Article	IF	CITATIONS
1	Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver – Update 2012. Ultrasound in Medicine and Biology, 2013, 39, 187-210.	1.5	652
2	Conventional US, US Elasticity Imaging, and Acoustic Radiation Force Impulse Imaging for Prediction of Malignancy in Thyroid Nodules. Radiology, 2014, 272, 577-586.	7.3	105
3	Virtual Touch Tissue Quantification of Acoustic Radiation Force Impulse: A New Ultrasound Elastic Imaging in the Diagnosis of Thyroid Nodules. PLoS ONE, 2012, 7, e49094.	2.5	103
4	Prediction of cervical lymph node metastasis in patients with papillary thyroid cancer using combined conventional ultrasound, strain elastography, and acoustic radiation force impulse (ARFI) elastography. European Radiology, 2016, 26, 2611-2622.	4.5	61
5	Ultrasound elastography of the thyroid: principles and current status. Ultrasonography, 2019, 38, 106-124.	2.3	61
6	A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate. Thyroid, 2021, 31, 470-481.	4.5	58
7	Quantitative Shear Wave Velocity Measurement on Acoustic Radiation Force Impulse Elastography for Differential Diagnosis between Benign and Malignant Thyroid Nodules: AÂMeta-analysis. Ultrasound in Medicine and Biology, 2015, 41, 3035-3043.	1.5	47
8	Virtual Touch Tissue Imaging on Acoustic Radiation Force Impulse Elastography. Journal of Ultrasound in Medicine, 2014, 33, 585-595.	1.7	45
9	Conventional Ultrasound, Immunohistochemical Factors and BRAFV600E Mutation in Predicting Central Cervical Lymph Node Metastasis of Papillary Thyroid Carcinoma. Ultrasound in Medicine and Biology, 2018, 44, 2296-2306.	1.5	38
10	Threeâ€Dimensional Shear Wave Elastography for Differentiating Benign From Malignant Thyroid Nodules. Journal of Ultrasound in Medicine, 2018, 37, 1777-1788.	1.7	30
11	Acoustic radiation force impulse elastography for differentiation of benign and malignant thyroid nodules with concurrent Hashimoto's thyroiditis. Medical Oncology, 2015, 32, 50.	2.5	29
12	Value of Virtual Touch Tissue Imaging Quantification for Evaluation of Ultrasound Breast Imaging-Reporting and Data System Category 4 Lesions. Ultrasound in Medicine and Biology, 2016, 42, 2050-2057.	1.5	29
13	Comparison of Virtual Touch Tissue Imaging & Quantification (VTIQ) and Virtual Touch Tissue Quantification (VTQ) for diagnosis ofÂthyroid nodules. Clinical Hemorheology and Microcirculation, 2017, 65, 137-149.	1.7	28
14	Virtual touch tissue imaging and quantification (VTIQ) in the evaluation of thyroid nodules: the associated factors leading to misdiagnosis. Scientific Reports, 2017, 7, 41958.	3.3	25
15	BRAF ^{V600E} mutation analysis in fineâ€needle aspiration cytology specimens for diagnosis of thyroid nodules: The influence of falseâ€positive and falseâ€negative results. Cancer Medicine, 2019, 8, 5577-5589.	2.8	25
16	Acoustic Radiation Force Impulse Imaging: A New Tool for the Diagnosis of Papillary Thyroid Microcarcinoma. BioMed Research International, 2014, 2014, 1-10.	1.9	24
17	First experience of comparisons between two different shear wave speed imaging systems in differentiating malignant from benign thyroid nodules. Clinical Hemorheology and Microcirculation, 2017, 65, 349-361.	1.7	22
18	The diagnostic performances of conventional strain elastography (SE), acoustic radiation force impulse (ARFI) imaging and point shear-wave speed (pSWS) measurement for non-calcified thyroid nodules. Clinical Hemorheology and Microcirculation, 2017, 65, 259-273.	1.7	19

Hui-Xiong Xu

#	Article	IF	CITATIONS
19	Quantitative parameters of contrast-enhanced ultrasound in breast invasive ductal carcinoma: The correlation with pathological prognostic factors. Clinical Hemorheology and Microcirculation, 2017, 66, 333-345.	1.7	19
20	Association between BRAF V600E Mutation and Ultrasound Features in Papillary Thyroid Carcinoma Patients with and without Hashimoto's Thyroiditis. Scientific Reports, 2017, 7, 4899.	3.3	19
21	Acoustic Radiation Force Impulse Elastography in the Diagnosis of Thyroid Nodules: Useful or Not Useful?. Ultrasound in Medicine and Biology, 2015, 41, 2581-2593.	1.5	17
22	Virtual Touch Tissue Imaging and Quantification in the Evaluation of Thyroid Nodules. Journal of Ultrasound in Medicine, 2017, 36, 251-260.	1.7	17
23	A Risk Model based on Ultrasound, Ultrasound Elastography, and Histologic Parameters for Predicting Axillary Lymph Node Metastasis in Breast Invasive Ductal Carcinoma. Scientific Reports, 2017, 7, 3029.	3.3	11
24	Highâ€frequency ultrasound for differentiation between highâ€risk basal cell carcinoma and cutaneous squamous cell carcinoma. Skin Research and Technology, 2022, 28, 410-418.	1.6	11
25	Assessment of Virtual Touch Tissue Imaging Quantification and the Ultrasound Thyroid Imaging Reporting and Data System in Patients With Thyroid Nodules Referred for Biopsy. Journal of Ultrasound in Medicine, 2018, 37, 725-736.	1.7	10
26	Highâ€frequency ultrasound in the diagnosis of the spectrum of cutaneous squamous cell carcinoma: Noninvasively distinguishing actinic keratosis, Bowen's Disease, and invasive squamous cell carcinoma. Skin Research and Technology, 2021, 27, 831-840.	1.6	10
27	Ultrasound Biomicroscopy and Highâ€Frequency Ultrasound for Evaluating Extramammary Paget Disease With Pathologic Correlation. Journal of Ultrasound in Medicine, 2019, 38, 3229-3237.	1.7	9
28	Predicting Axillary Lymph Node Metastasis in Patients With Breast Invasive Ductal Carcinoma With Negative Axillary Ultrasound Results Using Conventional Ultrasound and <scp>Contrastâ€Enhanced</scp> Ultrasound. Journal of Ultrasound in Medicine, 2020, 39, 2059-2070.	1.7	9
29	Imaging findings of Bowen's disease: A comparison between ultrasound biomicroscopy and conventional highâ€frequency ultrasound. Skin Research and Technology, 2020, 26, 654-663.	1.6	9
30	Predicting malignancy in thyroid nodules with benign cytology results: The role of Conventional Ultrasound, Shear Wave Elastography and BRAF V600E. Clinical Hemorheology and Microcirculation, 2022, 81, 33-45.	1.7	8
31	Suspicious ultrasound and clinicopathological features of papillary thyroid carcinoma predict the status of TERT promoter. Endocrine, 2020, 68, 349-357.	2.3	6
32	Virtual Touch Tissue Imaging for Differential Diagnosis of Thyroid Nodules. Journal of Ultrasound in Medicine, 2016, 35, 917-926.	1.7	5
33	Improving the quality of breast ultrasound examination performed by inexperienced ultrasound doctors with synchronous tele-ultrasound: a prospective, parallel controlled trial. Ultrasonography, 2022, 41, 307-316.	2.3	5
34	Improving the diagnosis of AUS/FLUS thyroid nodules using an algorithm with combination of BRAFV600E mutation analysis and ultrasound pattern-based risk stratification. Clinical Hemorheology and Microcirculation, 2021, 77, 273-285.	1.7	3
35	Stiffness distribution in the ablated zone after radiofrequency ablation for liver: An ex-vivo study with a tissue elastometer. Clinical Hemorheology and Microcirculation, 2019, 72, 151-160.	1.7	2

#	Article	IF	CITATIONS
37	Editorial: Ultrasound in Oncology: Application of Big Data and Artificial Intelligence. Frontiers in Oncology, 2021, 11, 819487.	2.8	1