Manuel RamÃ-rez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6558523/publications.pdf

Version: 2024-02-01

48 papers 1,344 citations

430874 18 h-index 35 g-index

48 all docs 48 docs citations

48 times ranked

1157 citing authors

#	Article	IF	Citations
1	New Insights into the Genome Organization of Yeast Double-Stranded RNA LBC Viruses. Microorganisms, 2022, 10, 173.	3.6	3
2	A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Frontiers in Microbiology, 2021, 12, 564532.	3.5	26
3	Base Wine and Traditional Sparkling Wine Making Using Torulaspora delbrueckii Killer Yeasts. Proceedings (mdpi), 2021, 70, 69.	0.2	O
4	Genome Features of a New Double-Stranded RNA Helper Virus (LBCbarr) from Wine Torulaspora delbrueckii Killer Strains. International Journal of Molecular Sciences, 2021, 22, 13492.	4.1	6
5	Analysing the vineyard soil as a natural reservoir for wine yeasts. Food Research International, 2020, 129, 108845.	6.2	11
6	Genome Organization of a New Double-Stranded RNA LA Helper Virus From Wine Torulaspora delbrueckii Killer Yeast as Compared With Its Saccharomyces Counterparts. Frontiers in Microbiology, 2020, 11, 593846.	3.5	8
7	Genetic Improvement of Torulaspora delbrueckii for Wine Fermentation: Eliminating Recessive Growth-Retarding Alleles and Obtaining New Mutants Resistant to SO2, Ethanol, and High CO2 Pressure. Microorganisms, 2020, 8, 1372.	3.6	5
8	Genetic Analysis of Mutant Strains of Saccharomyces cerevisiae with Defects in Mannoprotein Synthesis. Proceedings (mdpi), 2020, 70, .	0.2	0
9	Co-Inocula Assays of Yeasts with "Killer―Pheno-Type and Sensitive Strains of Saccharomyces cere-visiae with Defects in Mannoprotein Synthesis. Proceedings (mdpi), 2020, 70, .	0.2	О
10	Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine. International Journal of Food Microbiology, 2019, 289, 134-144.	4.7	19
11	The Yeast Torulaspora delbrueckii: An Interesting But Difficult-To-Use Tool for Winemaking. Fermentation, 2018, 4, 94.	3.0	56
12	Evaluation of the Microbial Viability of Soil Samples from Maize Crops in Freeze-Storage under Different Management Conditions in a Semi-Arid Climate. Sustainability, 2017, 9, 690.	3.2	4
13	New Insights into the Genome Organization of Yeast Killer Viruses Based on "Atypical―Killer Strains Characterized by High-Throughput Sequencing. Toxins, 2017, 9, 292.	3.4	20
14	Seasonal and Interannual Fluctuation of the Microbial Soil Community in a Maize Field under Long-Term Conservation Agriculture Management. Sustainability, 2017, 9, 778.	3.2	6
15	Transition from flooding to sprinkler irrigation in Mediterranean rice growing ecosystems: Effect on behaviour of bispyribac sodium. Agriculture, Ecosystems and Environment, 2016, 223, 99-107.	5.3	20
16	Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. International Journal of Food Microbiology, 2016, 238, 311-319.	4.7	36
17	Using mixed inocula of Saccharomyces cerevisiae killer strains to improve the quality of traditional sparkling-wine. Food Microbiology, 2016, 59, 150-160.	4.2	23
18	De-oiled two-phase olive mill waste may reduce water contamination by metribuzin. Science of the Total Environment, 2016, 541, 638-645.	8.0	12

#	Article	IF	CITATIONS
19	A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus. Frontiers in Microbiology, 2015, 6, 983.	3.5	54
20	Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine. Frontiers in Microbiology, 2015, 6, 1222.	3. 5	65
21	Influence of the management regime and phenological state of the vines on the physicochemical properties and the seasonal fluctuations of the microorganisms in a vineyard soil under semi-arid conditions. Soil and Tillage Research, 2013, 126, 119-126.	5. 6	42
22	Characterization, Ecological Distribution, and Population Dynamics of Saccharomyces Sensu Stricto Killer Yeasts in the Spontaneous Grape Must Fermentations of Southwestern Spain. Applied and Environmental Microbiology, 2012, 78, 735-743.	3.1	36
23	A New Wine <i>Saccharomyces cerevisiae </i> Killer Toxin (Klus), Encoded by a Double-Stranded RNA Virus, with Broad Antifungal Activity Is Evolutionarily Related to a Chromosomal Host Gene. Applied and Environmental Microbiology, 2011, 77, 1822-1832.	3.1	109
24	A low-cost procedure for production of fresh autochthonous wine yeast. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 459-469.	3.0	18
25	Wine yeast molecular typing using a simplified method for simultaneously extracting mtDNA, nuclear DNA and virus dsRNA. Food Microbiology, 2010, 27, 205-209.	4.2	38
26	Construction of Sterile (i>ime1 ir-Transgenic <i>Saccharomyces cerevisiae </i> Wine Yeasts Unable To Disseminate in Nature. Applied and Environmental Microbiology, 2008, 74, 2129-2134.	3.1	10
27	Analysis of Homothallic Saccharomyces cerevisiae Strain Mating during Must Fermentation. Applied and Environmental Microbiology, 2007, 73, 2486-2490.	3.1	8
28	Soil quality attributes of conservation management regimes in a semi-arid region of south western Spain. Soil and Tillage Research, 2007, 95, 255-265.	5.6	59
29	Rhodamine-Pink as a Genetic Marker for Yeast Populations in Wine Fermentation. Journal of Agricultural and Food Chemistry, 2006, 54, 2977-2984.	5.2	13
30	Rapid asymmetrical evolution of Saccharomyces cerevisiae wine yeasts. Yeast, 2005, 22, 1299-1306.	1.7	17
31	Sulfometuron Resistance as a Genetic Marker for Yeast Populations in Wine Fermentations. Journal of Agricultural and Food Chemistry, 2005, 53, 7438-7443.	5.2	11
32	Genetic Instability of Heterozygous, Hybrid, Natural Wine Yeasts. Applied and Environmental Microbiology, 2004, 70, 4686-4691.	3.1	40
33	Loss of heterozygosity of p16 correlates with minimal residual disease at the end of the induction therapy in non-high risk childhood B-cell precursor acute lymphoblastic leukemia. Leukemia Research, 2002, 26, 817-820.	0.8	10
34	Influence of killer strains of Saccharomyces cerevisiae on wine fermentation. Antonie Van Leeuwenhoek, 2001, 79, 393-399.	1.7	52
35	Cycloheximide resistance as marker for monitoring yeasts in wine fermentations. Food Microbiology, 2000, 17, 119-128.	4.2	26
36	Wine yeast fermentation vigor may be improved by elimination of recessive growth-retarding alleles., 1999, 65, 212-218.		29

#	Article	IF	CITATIONS
37	A simple and effective procedure for selection of wine yeast strains. Food Microbiology, 1997, 14, 247-254.	4.2	84
38	Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae Molecular and Cellular Biology, 1991, 11, 3027-3036.	2.3	153
39	Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression Molecular and Cellular Biology, 1990, 10, 2820-2831.	2.3	123
40	A similar protein portion for two exoglucanases secreted by Saccharomyces cerevisiae. Archives of Microbiology, 1989, 151, 391-398.	2.2	37
41	The major yeast exoglucanase: an extracellular glycoprotein lacking the carbohydrate outer chain. Biochimica Et Biophysica Acta - General Subjects, 1989, 990, 206-210.	2.4	13
42	Two ionic forms of exoglucanase in yeast secretory mutants. FEBS Letters, 1988, 237, 53-56.	2.8	10
43	Accumulation of exoglucanase activity in yeast secretory mutants blocked at the endoplasmic reticulum level. FEBS Letters, 1986, 196, 291-295.	2.8	3
44	Accumulation and secretion of exoglucanase activity in yeast secretory mutants. Archives of Microbiology, 1986, 146, 221-226.	2.2	14
45	Mutants of Escherichia coli sensitive to hydrogen peroxide. Current Microbiology, 1983, 8, 251-253.	2.2	15
46	Rapid Biased Evolution of Genetically Unstable Wine Yeast Hybrids under Non-Selective Conditions. , 0, , 332-336.		0
47	Rodamine Resistance as Marker for Monitoring Yeasts in Wine Fermentations., 0,, 337-341.		O
48	Sulfometuron Methyl Resistance as Genetic Marker for Monitoring Yeast Populations in Wine Fermentation., 0,, 351-355.		0