Rajan Choudhary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation on bioactivity, mechanical stability, bactericidal activity and in-vitro biocompatibility of magnesium silicates for bone tissue engineering applications. Journal of Materials Research, 2022, 37, 608-621.	2.6	9
2	Conversion of Biowaste into Larnite by Solâ€Gel Combustion Route for Biomedical Applications. ChemistrySelect, 2022, 7, e202103783.	1.5	4
3	Comparative investigation on antibacterial, biological and mechanical behaviour of monticellite and diopside derived from biowaste for bone regeneration. Materials Chemistry and Physics, 2022, 286, 126157.	4.0	12
4	Production of Biodiesel from Soybean Oil in Less Time and at Low Temperature. Asian Journal of Chemistry, 2022, 34, 2173-2177.	0.3	0
5	Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics. Materials Science and Engineering C, 2021, 118, 111466.	7.3	24
6	Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk. Materials Science and Engineering C, 2021, 118, 111456.	7.3	43
7	A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers, 2021, 13, 1105.	4.5	435
8	Advances in Sintering Techniques for Calcium Phosphates Ceramics. Materials, 2021, 14, 6133.	2.9	15
9	Antibacterial wollastonite supported excellent proliferation and osteogenic differentiation of human bone marrow derived mesenchymal stromal cells. Journal of Sol-Gel Science and Technology, 2021, 100, 506-516.	2.4	3
10	Designing of porous PMMA/diopside bone cement for non-load bearing applications. Journal of Asian Ceramic Societies, 2020, 8, 862-872.	2.3	5
11	Photocatalytic Degradation of Methylene Blue Dye by Calciumâ€and Magnesiumâ€Based Silicate Ceramics. ChemistrySelect, 2020, 5, 12198-12205.	1.5	12
12	Impact of forsterite addition on mechanical and biological properties of composites. Journal of Asian Ceramic Societies, 2020, 8, 1051-1065.	2.3	15
13	Biocompatibility and Physico-Chemical Properties of Highly Porous PLA/HA Scaffolds for Bone Reconstruction. Polymers, 2020, 12, 2938.	4.5	63
14	Biomimetic scaffold fabricated with a mammalian trabecular bone template. Polymer Degradation and Stability, 2020, 172, 109076.	5.8	5
15	Biomineralization, antibacterial activity and mechanical properties of biowaste derived diopside nanopowders. Advanced Powder Technology, 2019, 30, 1950-1964.	4.1	30
16	A Fundamental Approach Toward Polymers and Polymer Composites: Current Trends for Biomedical Applications. Lecture Notes in Bioengineering, 2019, , 1-28.	0.4	5
17	The physicochemical and biomechanical profile of forsterite and its osteogenic potential of mesenchymal stromal cells. PLoS ONE, 2019, 14, e0214212.	2.5	22
18	Wollastonite/forsterite composite scaffolds offer better surface for hydroxyapatite formation. Bulletin of Materials Science, 2019, 42, 1.	1.7	9

RAJAN CHOUDHARY

#	Article	IF	CITATIONS
19	Antibacterial forsterite (Mg2SiO4) scaffold: A promising bioceramic for load bearing applications. Bioactive Materials, 2018, 3, 218-224.	15.6	46
20	Preparation of nanocrystalline forsterite by combustion of different fuels and their comparative in-vitro bioactivity, dissolution behaviour and antibacterial studies. Materials Science and Engineering C, 2017, 77, 811-822.	7.3	32
21	In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method. Materials Science and Engineering C, 2016, 68, 89-100.	7.3	45
22	In vitro bioactivity studies of larnite and larnite/chitin composites prepared from biowaste for biomedical applications. Bulletin of Materials Science, 2016, 39, 1213-1221.	1.7	11
23	Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. Journal of Asian Ceramic Societies, 2015, 3, 173-177.	2.3	125
24	In-vitro bioactivity of nanocrystalline and bulk larnite/chitosan composites: comparative study. Journal of Sol-Gel Science and Technology, 2015, 74, 631-640.	2.4	19