Xuchun Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/6558288/xuchun-li-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,967 31 24 31 h-index g-index citations papers 11.1 3,721 31 5.21 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
31	Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. <i>Environmental Science & amp; Technology</i> , 2013 , 47, 11685-91	10.3	465
30	Removal of 2-MIB and geosmin using UV/persulfate: contributions of hydroxyl and sulfate radicals. <i>Water Research</i> , 2015 , 69, 223-233	12.5	350
29	Strong enhancement on fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles. <i>Environmental Science & Environmental &</i>	10.3	295
28	Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. <i>Water Research</i> , 2016 , 104, 272-282	12.5	192
27	Efficient reductive dechlorination of monochloroacetic acid by sulfite/UV process. <i>Environmental Science & Environmental Scie</i>	10.3	175
26	Comparison of permanganate preoxidation and preozonation on algae containing water: cell integrity, characteristics, and chlorinated disinfection byproduct formation. <i>Environmental Science & Environmental Science</i>	10.3	170
25	One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. <i>Chemical Engineering Journal</i> , 2017 , 308, 791-797	14.7	158
24	Comparison of the UV/chlorine and UV/HO processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. <i>Water Research</i> , 2018 , 147, 184-194	12.5	147
23	Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO)-mediated transformation pathways and toxicity changes. <i>Water Research</i> , 2018 , 137, 242-	2 50 .5	108
22	Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways. <i>Chemical Engineering Journal</i> , 2016 , 299, 23-29	14.7	100
21	Efficient degradation of sulfamethoxazole by the Fe(II)/HSO process enhanced by hydroxylamine: Efficiency and mechanism. <i>Journal of Hazardous Materials</i> , 2017 , 322, 461-468	12.8	98
20	Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	93
19	Chlorate Formation Mechanism in the Presence of Sulfate Radical, Chloride, Bromide and Natural Organic Matter. <i>Environmental Science & Environmental </i>	10.3	72
18	Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFeO <i>RSC Advances</i> , 2018 , 8, 1071-1077	3.7	70
17	Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process. <i>Water Research</i> , 2014 , 62, 220-8	12.5	64
16	Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. <i>Water Research</i> , 2018 , 133, 69-78	12.5	61
15	Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fel') activated peroxydisulfate (PDS) system in groundwater. <i>Journal of Hazardous Materials</i> , 2018 , 357, 207-216	12.8	41

LIST OF PUBLICATIONS

14	Autocatalytic Decomplexation of Cu(II)-EDTA and Simultaneous Removal of Aqueous Cu(II) by UV/Chlorine. <i>Environmental Science & Environmental Science </i>	10.3	39	
13	Mechanism and efficiency of contaminant reduction by hydrated electron in the sulfite/iodide/UV process. <i>Water Research</i> , 2018 , 129, 357-364	12.5	38	
12	Self-enhanced ozonation of benzoic acid at acidic pHs. Water Research, 2015, 73, 9-16	12.5	37	
11	Degradation of metronidazole by UV/chlorine treatment: Efficiency, mechanism, pathways and DBPs formation. <i>Chemosphere</i> , 2019 , 224, 228-236	8.4	34	
10	Ultraviolet Irradiation of Permanganate Enhanced the Oxidation of Micropollutants by Producing HOIand Reactive Manganese Species. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 750-756	11	33	
9	Enhanced debromination of 4-bromophenol by the UV/sulfite process: Efficiency and mechanism. <i>Journal of Environmental Sciences</i> , 2017 , 54, 231-238	6.4	31	
8	Overlooked Role of Peroxides as Free Radical Precursors in Advanced Oxidation Processes. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	27	
7	Enhanced HO production from ozonation activated by EDTA. <i>Chemical Engineering Journal</i> , 2016 , 288, 562-568	14.7	20	
6	A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. <i>Chemical Engineering Journal</i> , 2022 , 429, 131688	14.7	20	
5	Overlooked role of secondary radicals in the degradation of beta-blockers and toxicity change in UV/chlorine process. <i>Chemical Engineering Journal</i> , 2020 , 391, 123606	14.7	13	
4	Insights into the effects of bromide at fresh water levels on the radical chemistry in the UV/peroxydisulfate process. <i>Water Research</i> , 2021 , 197, 117042	12.5	10	
3	Enhanced ozonation of Cu(II)-organic complexes and simultaneous recovery of aqueous Cu(II) by cathodic reduction. <i>Journal of Cleaner Production</i> , 2021 , 298, 126837	10.3	5	
2	Thiourea Dioxide Coupled with Trace Cu(II): An Effective Process for the Reductive Degradation of Diatrizoate. <i>Environmental Science & Environmental </i>	10.3	1	
1	Fabrication of Coral-Shaped MoS 2 @Ni(Mn)VO X Electrocatalyst for Efficient Alkaline Hydrogen Evolution. <i>Energy Technology</i> ,2101007	3.5	О	