
Tessa E Pronk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6558248/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Development of a framework to derive effect-based trigger values to interpret CALUX data for drinking water quality. Water Research, 2021, 193, 116859.	5.3	20
2	Organic micropollutant removal in full-scale rapid sand filters used for drinking water treatment in The Netherlands and Belgium. Chemosphere, 2020, 260, 127630.	4.2	26
3	The Time Efficiency Gain in Sharing and Reuse of Research Data. Data Science Journal, 2019, 18, .	0.6	13
4	Cyclosporin AÂinduced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions. BMC Genomics, 2015, 16, 822.	1.2	6
5	A game theoretic analysis of research data sharing. PeerJ, 2015, 3, e1242.	0.9	15
6	In vivo murine hepatic microRNA and mRNA expression signatures predicting the (non-)genotoxic carcinogenic potential of chemicals. Archives of Toxicology, 2014, 88, 1023-1034.	1.9	21
7	Gene expression markers in the zebrafish embryo reflect a hepatotoxic response in animal models and humans. Toxicology Letters, 2014, 230, 48-56.	0.4	22
8	Comparison of the molecular topologies of stress-activated transcription factors HSF1, AP-1, NRF2, and NF-1ºB in their induction kinetics of HMOX1. BioSystems, 2014, 124, 75-85.	0.9	14
9	Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Archives of Toxicology, 2013, 87, 807-823.	1.9	77
10	Benzo[a]pyrene-induced transcriptomic responses in primary hepatocytes and in vivo liver: Toxicokinetics is essential for in vivo–in vitro comparisons. Archives of Toxicology, 2013, 87, 505-515.	1.9	11
11	Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation. Toxicology and Applied Pharmacology, 2013, 272, 161-171.	1.3	44
12	Cyclosporine A treated in vitro models induce cholestasis response through comparison of phenotype-directed gene expression analysis of in vivo Cyclosporine A-induced cholestasis. Toxicology Letters, 2013, 221, 225-236.	0.4	19
13	Applicability of a keratinocyte gene signature to predict skin sensitizing potential. Toxicology in Vitro, 2013, 27, 314-322.	1.1	50
14	Unraveling toxicological mechanisms and predicting toxicity classes with gene dysregulation networks. Journal of Applied Toxicology, 2013, 33, 1407-1415.	1.4	6
15	A Comparison of Gene Expression Responses in Rat Whole Embryo Culture and In Vivo: Time-Dependent Retinoic Acid-Induced Teratogenic Response. Toxicological Sciences, 2012, 126, 242-254.	1.4	34
16	Concentration-Response Analysis of Differential Gene Expression in the Zebrafish Embryotoxicity Test Following Flusilazole Exposure. Toxicological Sciences, 2012, 127, 303-312.	1.4	53
17	Zebrafish embryotoxicity assessed by morphology and transcriptomics. Reproductive Toxicology, 2012, 34, 146.	1.3	0
18	Triazole-induced gene expression changes in the zebrafish embryo. Reproductive Toxicology, 2012, 34, 216-224.	1.3	53

Tessa E Pronk

#	Article	IF	CITATIONS
19	Effects of pooling RNA from samples treated with different compounds for determining class specific biomarkers and processes in toxicogenomics. Toxicology in Vitro, 2011, 25, 1841-1847.	1.1	7
20	Chemical class-specific gene expression changes in the zebrafish embryo after exposure to glycol ether alkoxy acids and 1,2,4-triazole antifungals. Reproductive Toxicology, 2011, 32, 245-252.	1.3	46
21	Gene set assembly for quantitative prediction of developmental toxicity in the embryonic stem cell test. Toxicology, 2011, 284, 63-71.	2.0	33
22	Identification by Gene Coregulation Mapping of Novel Genes Involved in Embryonic Stem Cell Differentiation. Stem Cells and Development, 2011, 20, 115-126.	1.1	10
23	Keratinocyte Gene Expression Profiles Discriminate Sensitizing and Irritating Compounds. Toxicological Sciences, 2010, 117, 81-89.	1.4	73
24	Operon structure of Staphylococcus aureus. Nucleic Acids Research, 2010, 38, 3263-3274.	6.5	28
25	Towards Design Space Exploration for Biological Systems. Journal of Computers, 2008, 3, .	0.4	3
26	Evaluating the Design of Biological Cells Using a Computer Workbench. , 2007, , .		1
27	Plants that differ in height investment can coexist if they are distributing non-uniformly within an area. Ecological Complexity, 2007, 4, 182-191.	1.4	18
28	Taking the example of computer systems engineering for the analysis of biological cell systems. BioSystems, 2007, 90, 623-635.	0.9	3
29	Coexistence by temporal partitioning of the available light in plants with different height and leaf investments. Ecological Modelling, 2007, 204, 349-358.	1.2	11
30	Could plant-feeding nematodes affect the competition between grass species during succession in grasslands under restoration management?. Journal of Ecology, 2002, 90, 753-761.	1.9	52