Mickael L D Deroche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in Spoken and Sung Productions Following Adaptation to Pitch-shifted Auditory Feedback. Journal of Voice, 2023, 37, 466.e1-466.e15.	1.5	5
2	Voice emotion recognition by Mandarinâ€speaking pediatric cochlear implant users in Taiwan. Laryngoscope Investigative Otolaryngology, 2022, 7, 250-258.	1.5	7
3	Disentangling listening effort and memory load beyond behavioural evidence: Pupillary response to listening effort during a concurrent memory task. PLoS ONE, 2021, 16, e0233251.	2.5	14
4	Cochlear Implant Compression Optimization for Musical Sound Quality in MED-EL Users. Ear and Hearing, 2021, Publish Ahead of Print, .	2.1	6
5	Factors Associated with Speech-Recognition Performance in School-Aged Children with Cochlear Implants and Early Auditory-Verbal Intervention. Journal of the American Academy of Audiology, 2021, 32, 433-444.	0.7	5
6	Adaptation to pitch-altered feedback is independent of one's own voice pitch sensitivity. Scientific Reports, 2020, 10, 16860.	3.3	9
7	Perception of Child-Directed Versus Adult-Directed Emotional Speech in Pediatric Cochlear Implant Users. Ear and Hearing, 2020, 41, 1372-1382.	2.1	10
8	Neural Correlates of Vocal Pitch Compensation in Individuals Who Stutter. Frontiers in Human Neuroscience, 2020, 14, 18.	2.0	10
9	Processing of Acoustic Information in Lexical Tone Production and Perception by Pediatric Cochlear Implant Recipients. Frontiers in Neuroscience, 2019, 13, 639.	2.8	16
10	A tonal-language benefit for pitch in normally-hearing and cochlear-implanted children. Scientific Reports, 2019, 9, 109.	3.3	29
11	Adults who stutter and metronome synchronization: evidence for a nonspeech timing deficit. Annals of the New York Academy of Sciences, 2019, 1449, 56-69.	3.8	19
12	Segregation of voices with single or double fundamental frequencies. Journal of the Acoustical Society of America, 2019, 145, 847-857.	1.1	2
13	A Randomized Controlled Crossover Study of the Impact of Online Music Training on Pitch and Timbre Perception in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 247-262.	1.8	26
14	Neurophysiological Differences in Emotional Processing by Cochlear Implant Users, Extending Beyond the Realm of Speech. Ear and Hearing, 2019, 40, 1197-1209.	2.1	10
15	Timing variability of sensorimotor integration during vocalization in individuals who stutter. Scientific Reports, 2018, 8, 16340.	3.3	28
16	Voice emotion perception and production in cochlear implant users. Hearing Research, 2017, 352, 30-39.	2.0	55
17	The intelligibility of speech in a harmonic masker varying in fundamental frequency contour, broadband temporal envelope, and spatial location. Hearing Research, 2017, 350, 1-10.	2.0	17
18	Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients. Journal of Speech, Language, and Hearing Research, 2017, 60, 1223-1235.	1.6	36

MICKAEL L D DEROCHE

#	Article	IF	CITATIONS
19	Reverberation limits the release from informational masking obtained in the harmonic and binaural domains. Attention, Perception, and Psychophysics, 2017, 79, 363-379.	1.3	8
20	Similar abilities of musicians and non-musicians to segregate voices by fundamental frequency. Journal of the Acoustical Society of America, 2017, 142, 1739-1755.	1.1	22
21	Modulation of Speech Motor Learning with Transcranial Direct Current Stimulation of the Inferior Parietal Lobe. Frontiers in Integrative Neuroscience, 2017, 11, 35.	2.1	14
22	Deficits in the Sensitivity to Pitch Sweeps by School-Aged Children Wearing Cochlear Implants. Frontiers in Neuroscience, 2016, 10, 73.	2.8	20
23	Neural correlates of two different types of extinction learning in the amygdala central nucleus. Nature Communications, 2016, 7, 12330.	12.8	15
24	Mandarin Tone Identification in Cochlear Implant Users Using Exaggerated Pitch Contours. Otology and Neurotology, 2016, 37, 324-331.	1.3	11
25	Voice emotion recognition by cochlear-implanted children and their normally-hearing peers. Hearing Research, 2015, 322, 151-162.	2.0	113
26	Deficits in the pitch sensitivity of cochlear-implanted children speaking English or Mandarin. Frontiers in Neuroscience, 2014, 8, 282.	2.8	31
27	Speech recognition against harmonic and inharmonic complexes: Spectral dips and periodicity. Journal of the Acoustical Society of America, 2014, 135, 2873-2884.	1.1	21
28	Roles of the target and masker fundamental frequencies in voice segregation. Journal of the Acoustical Society of America, 2014, 136, 1225-1236.	1.1	20
29	Phase effects in masking by harmonic complexes: Detection of bands of speech-shaped noise. Journal of the Acoustical Society of America, 2014, 136, 2726-2736.	1.1	3
30	Not just the norm: Exemplar-based models also predict face aftereffects. Psychonomic Bulletin and Review, 2014, 21, 47-70.	2.8	40
31	Phase effects in masking by harmonic complexes: Speech recognition. Hearing Research, 2013, 306, 54-62.	2.0	6
32	Voice segregation by difference in fundamental frequency: Effect of masker type. Journal of the Acoustical Society of America, 2013, 134, EL465-EL470.	1.1	11
33	Sensitivity of school-aged children to pitch-related cues. Journal of the Acoustical Society of America, 2012, 131, 2938-2947.	1.1	20
34	Narrow noise band detection in a complex masker: Masking level difference due to harmonicity. Hearing Research, 2011, 282, 225-235.	2.0	11
35	Voice segregation by difference in fundamental frequency: Evidence for harmonic cancellation. Journal of the Acoustical Society of America, 2011, 130, 2855-2865.	1.1	29