Takaaki Mizuki

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6557782/takaaki-mizuki-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

1,272 125 29 21 h-index g-index citations papers 0.8 1,382 136 5.53 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
125	Information Leakage Due to Operative Errors in Card-based Protocols. <i>Information and Computation</i> , 2022 , 104910	0.8	2
124	Another Use of the Five-Card Trick: Card-Minimal Secure Three-Input Majority Function Evaluation. <i>Lecture Notes in Computer Science</i> , 2021 , 536-555	0.9	4
123	Zero-Knowledge Proof Protocol for Cryptarithmetic Using Dihedral Cards. <i>Lecture Notes in Computer Science</i> , 2021 , 51-67	0.9	7
122	A Card-Minimal Three-Input AND Protocol Using Two Shuffles. <i>Lecture Notes in Computer Science</i> , 2021 , 668-679	0.9	5
121	Card-Based Zero-Knowledge Proof Protocols for Graph Problems and Their Computational Model. <i>Lecture Notes in Computer Science</i> , 2021 , 136-152	0.9	3
120	Preface: Special Issue on Card-Based Cryptography. New Generation Computing, 2021, 39, 1-2	0.9	4
119	New Card-based Copy Protocols Using Only Random Cuts 2021 ,		7
118	Cooking Cryptographers: Secure Multiparty Computation Based on Balls and Bags 2021,		5
117	Evaluating card-based protocols in terms of execution time. <i>International Journal of Information Security</i> , 2021 , 20, 729-740	2.8	3
116	A Secure Three-Input AND Protocol with a Standard Deck of Minimal Cards. <i>Lecture Notes in Computer Science</i> , 2021 , 242-256	0.9	9
115	Efficient Generation of a Card-Based Uniformly Distributed Random Derangement. <i>Lecture Notes in Computer Science</i> , 2021 , 78-89	0.9	6
114	Interactive Physical ZKP for Connectivity: Applications to Nurikabe and Hitori. <i>Lecture Notes in Computer Science</i> , 2021 , 373-384	0.9	14
113	Five-Card AND Computations in Committed Format Using Only Uniform Cyclic Shuffles. <i>New Generation Computing</i> , 2021 , 39, 97-114	0.9	13
112	Card-Based Covert Lottery. Lecture Notes in Computer Science, 2021, 257-270	0.9	6
111	How to construct physical zero-knowledge proofs for puzzles with a Bingle loopLondition. <i>Theoretical Computer Science</i> , 2021 , 888, 41-55	1.1	15
110	Physical zero-knowledge proof and NP-completeness proof of Suguru puzzle. <i>Information and Computation</i> , 2021 , 104858	0.8	9
109	Card-based protocols for secure ranking computations. <i>Theoretical Computer Science</i> , 2020 , 845, 122-1	351.1	14

108	Efficient card-based zero-knowledge proof for Sudoku. <i>Theoretical Computer Science</i> , 2020 , 839, 135-14	12 _{1.1}	32
107	Six-Card Finite-Runtime XOR Protocol with Only Random Cut 2020 ,		10
106	How to Implement a Non-uniform or Non-closed Shuffle. Lecture Notes in Computer Science, 2020, 107-	1189	3
105	Public-PEZ Cryptography. Lecture Notes in Computer Science, 2020 , 59-74	0.9	3
104	Physical Zero-Knowledge Proof for Suguru Puzzle. Lecture Notes in Computer Science, 2020 , 235-247	0.9	15
103	Practical card-based implementations of Yao's millionaire protocol. <i>Theoretical Computer Science</i> , 2020 , 803, 207-221	1.1	25
102	Secure implementations of a random bisection cut. <i>International Journal of Information Security</i> , 2020 , 19, 445-452	2.8	21
101	Card-Based Physical Zero-Knowledge Proof for Kakuro. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2019 , E102.A, 1072-1078	0.4	24
100	Light Cryptography. IFIP Advances in Information and Communication Technology, 2019, 89-101	0.5	2
99	The Six-Card Trick: Secure Computation of Three-Input Equality. <i>Lecture Notes in Computer Science</i> , 2019 , 123-131	0.9	10
98	Secure Computation of Any Boolean Function Based on Any Deck of Cards. <i>Lecture Notes in Computer Science</i> , 2019 , 63-75	0.9	8
97	Interactive Physical Zero-Knowledge Proof for Norinori. Lecture Notes in Computer Science, 2019 , 166-1	7 7 .9	26
96	A Physical ZKP for Slitherlink: How to Perform Physical Topology-Preserving Computation. <i>Lecture Notes in Computer Science</i> , 2019 , 135-151	0.9	14
95	Card-Based Protocol Against Actively Revealing Card Attack. <i>Lecture Notes in Computer Science</i> , 2019 , 95-106	0.9	6
94	Card-Based Secure Ranking Computations. Lecture Notes in Computer Science, 2019, 461-472	0.9	5
93	A study on an Effective Evaluation Method for EM Information Leakage without Reconstructing Screen 2019 ,		3
92	Information Leakage Threats for Cryptographic Devices Using IEMI and EM Emission. <i>IEEE Transactions on Electromagnetic Compatibility</i> , 2018 , 60, 1340-1347	2	1
91	Card-based protocols using unequal division shuffles. <i>Soft Computing</i> , 2018 , 22, 361-371	3.5	21

90	Pile-Shifting Scramble for Card-Based Protocols. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2018 , E101.A, 1494-1502	0.4	17
89	Multi-party Computation Based on Physical Coins. <i>Lecture Notes in Computer Science</i> , 2018 , 87-98	0.9	2
88	Practical and Easy-to-Understand Card-Based Implementation of Yao Millionaire Protocol. <i>Lecture Notes in Computer Science</i> , 2018 , 246-261	0.9	4
87	Secret Key Amplification from Uniformly Leaked Key Exchange Complete Graph. <i>Lecture Notes in Computer Science</i> , 2018 , 20-31	0.9	
86	Analyzing Execution Time of Card-Based Protocols. <i>Lecture Notes in Computer Science</i> , 2018 , 145-158	0.9	4
85	Analysis of Information Leakage Due to Operative Errors in Card-Based Protocols. <i>Lecture Notes in Computer Science</i> , 2018 , 250-262	0.9	9
84	Five-Card AND Protocol in Committed Format Using Only Practical Shuffles 2018,		19
83	Physical Zero-Knowledge Proof for Makaro. <i>Lecture Notes in Computer Science</i> , 2018 , 111-125	0.9	29
82	The Minimum Number of Cards in Practical Card-Based Protocols. <i>Lecture Notes in Computer Science</i> , 2017 , 126-155	0.9	28
81	Card-Based Protocols Using Regular Polygon Cards. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2017 , E100.A, 1900-1909	0.4	17
80	Computational Model of Card-Based Cryptographic Protocols and Its Applications. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2017 , E100.A, 3-11	0.4	38
79	Necessary and Sufficient Numbers of Cards for Securely Computing Two-Bit Output Functions. <i>Lecture Notes in Computer Science</i> , 2017 , 193-211	0.9	10
78	Secure Multi-Party Computations Using a Deck of Cards. <i>Ieice Ess Fundamentals Review</i> , 2016 , 9, 179-187	7 0.1	1
77	Card-based protocols for securely computing the conjunction of multiple variables. <i>Theoretical Computer Science</i> , 2016 , 622, 34-44	1.1	26
76	Efficient and Secure Multiparty Computations Using a Standard Deck of Playing Cards. <i>Lecture Notes in Computer Science</i> , 2016 , 484-499	0.9	18
75	How to Implement a Random Bisection Cut. Lecture Notes in Computer Science, 2016, 58-69	0.9	28
74	Quantitative Evaluation of Inductance at the Coaxial Connector Contact Failure Portion. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2016 , 136, 347-352	0.2	1
73	Secure Computation Protocols Using Polarizing Cards. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2016 , E99.A, 1122-1131	0.4	7

72	Fundamental Study on a Mechanism of Faulty Outputs from Cryptographic Modules Due to IEMI. <i>Electronics and Communications in Japan</i> , 2016 , 99, 72-78	0.4		
71	An Implementation of Non-Uniform Shuffle for Secure Multi-Party Computation 2016,		10	
7º	Efficient Electromagnetic Analysis for Cryptographic Module on the Frequency Domain. <i>Electronics and Communications in Japan</i> , 2016 , 99, 24-32	0.4	1	
69	Physical authentication using side-channel information 2016 ,		4	
68	Secure Multi-Party Computation Using Polarizing Cards. Lecture Notes in Computer Science, 2015, 281-2	29 7.9	7	
67	Method for estimating fault injection time on cryptographic devices from EM leakage 2015,		2	
66	Fundamental study on randomized processing in cryptographic IC using variable clock against Correlation Power Analysis 2015 ,		1	
65	Basic Study on the Method for Real-Time Video Streaming with Low Latency and High Bandwidth Efficiency 2015 ,		1	
64	Five-Card Secure Computations Using Unequal Division Shuffle. <i>Lecture Notes in Computer Science</i> , 2015 , 109-120	0.9	14	
63	Securely Computing Three-Input Functions with Eight Cards. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2015 , E98.A, 1145-1152	0.4	19	
62	Card-Based Protocols for Any Boolean Function. Lecture Notes in Computer Science, 2015, 110-121	0.9	33	
61	Efficient Card-Based Protocols for Generating a Hidden Random Permutation Without Fixed Points. <i>Lecture Notes in Computer Science</i> , 2015 , 215-226	0.9	39	
60	Multi-party Computation with Small Shuffle Complexity Using Regular Polygon Cards. <i>Lecture Notes in Computer Science</i> , 2015 , 127-146	0.9	17	
59	Fundamental Study on a Mechanism of Faulty Outputs from Cryptographic Modules due to IEMI. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2015 , 135, 276-281	0.2		
58	Efficient Electromagnetic Analysis for Cryptographic Module on the Frequency Domain. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2015 , 135, 515-521	0.2		
57	A formalization of card-based cryptographic protocols via abstract machine. <i>International Journal of Information Security</i> , 2014 , 13, 15-23	2.8	61	
56	Precisely timed IEMI fault injection synchronized with EM information leakage 2014,		3	
55	Minimizing ESCT forms for two-variable multiple-valued input binary output functions. <i>Discrete Applied Mathematics</i> , 2014 , 169, 186-194	1	1	

54	Practical Card-Based Cryptography. Lecture Notes in Computer Science, 2014, 313-324	0.9	24
53	Investigation of Noise Interference due to Connector Contact Failure in a Coaxial Cable. <i>IEICE Transactions on Electronics</i> , 2014 , E97.C, 900-903	0.4	1
52	Analysis of Electromagnetic Information Leakage From Cryptographic Devices With Different Physical Structures. <i>IEEE Transactions on Electromagnetic Compatibility</i> , 2013 , 55, 571-580	2	39
51	Transient IEMI Threats for Cryptographic Devices. <i>IEEE Transactions on Electromagnetic Compatibility</i> , 2013 , 55, 140-148	2	11
50	Efficient Evaluation of EM Radiation Associated With Information Leakage From Cryptographic Devices. <i>IEEE Transactions on Electromagnetic Compatibility</i> , 2013 , 55, 555-563	2	24
49	Influence of PCB and attached line of hardware on electromagnetic (EM) information leakage. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2013 , 182, 1-9	0.4	
48	Map-based analysis of IEMI fault injection into cryptographic devices 2013,		2
47	Evaluation of Resistance and Inductance of Loose Connector Contact. <i>IEICE Transactions on Electronics</i> , 2013 , E96.C, 1148-1150	0.4	3
46	Voting with a Logarithmic Number of Cards. Lecture Notes in Computer Science, 2013, 162-173	0.9	38
45	Securely Computing the Three-Input Majority Function with Eight Cards. <i>Lecture Notes in Computer Science</i> , 2013 , 193-204	0.9	27
44	Effect of Connector Contact Points on Common-Mode Current on a Coaxial Transmission Line. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2013 , 133, 273-277	0.2	
43	Study on Information Leakage of Input Key due to Frequency Fluctuation of RC Oscillator in Keyboard. <i>IEICE Transactions on Communications</i> , 2013 , E96.B, 2633-2638	0.5	1
42	Investigation on the effect of parasitic inductance at connector contact boundary on electromagnetic radiation 2012 ,		1
41	ABSOLUTELY SECURE MESSAGE TRANSMISSION USING A KEY SHARING GRAPH. <i>Discrete Mathematics, Algorithms and Applications</i> , 2012 , 04, 1250053	0.5	1
40	Efficient mapping of EM radiation associated with information leakage for cryptographic devices 2012 ,		2
39	Mechanism of Increase in Inductance at Loosened Connector Contact Boundary. <i>IEICE Transactions on Electronics</i> , 2012 , E95.C, 1502-1507	0.4	5
38	The Five-Card Trick Can Be Done with Four Cards. Lecture Notes in Computer Science, 2012, 598-606	0.9	55
37	Evaluation of Information Leakage from Cryptographic Hardware via Common-Mode Current. <i>IEICE Transactions on Electronics</i> , 2012 , E95.C, 1089-1097	0.4	5

(2008-2012)

36	Fundamental Study on Mechanism of Electromagnetic Field Radiation from Electric Devices with Loose Contact of Connector. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2012 , 132, 373-378	0.2	3
35	Influence of PCB and Attached Line of Hardware on Electromagnetic (EM) Information Leakage. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2012 , 132, 173-179	0.2	
34	Analysis of Magnetic Field Distribution around Connector with Contact Failure. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2012 , 132, 417-420	0.2	
33	Recent Research Trends in Side Channel Attack on Cryptographic Modules and its Countermeasure. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2012 , 132, 9-12	0.2	
32	Effect of Contact Failure of Connector in Electronic Control Units on Radiated Emissions. <i>IEEJ Transactions on Fundamentals and Materials</i> , 2012 , 132, 456-457	0.2	
31	Non-invasive EMI-based fault injection attack against cryptographic modules 2011,		18
30	Analysis of Electromagnetic Radiation from Transmission Line with Loose Contact of Connector. <i>IEICE Transactions on Electronics</i> , 2011 , E94-C, 1427-1430	0.4	5
29	Contact Conditions in Connectors that Cause Common Mode Radiation. <i>IEICE Transactions on Electronics</i> , 2011 , E94-C, 1369-1374	0.4	2
28	Suppression of information leakage from electronic devices based on SNR 2011 ,		4
27	AN APPLICATION OF ST-NUMBERING TO SECRET KEY AGREEMENT. <i>International Journal of Foundations of Computer Science</i> , 2011 , 22, 1211-1227	0.6	3
26	Modeling connector contact condition using a contact failure model with equivalent inductance 2010 ,		3
25	Information leakage from cryptographic hardware via common-mode current 2010,		2
24	A one-round secure message broadcasting protocol through a key sharing tree. <i>Information Processing Letters</i> , 2009 , 109, 842-845	0.8	2
23	Six-Card Secure AND and Four-Card Secure XOR. Lecture Notes in Computer Science, 2009, 358-369	0.9	83
22	Mechanism behind Information Leakage in Electromagnetic Analysis of Cryptographic Modules. <i>Lecture Notes in Computer Science</i> , 2009 , 66-78	0.9	10
21	Minimizing AND-EXOR Expressions for Multiple-Valued Two-Input Logic Functions. <i>Lecture Notes in Computer Science</i> , 2009 , 301-310	0.9	
20	On contact conditions in connectors to cause Common Mode radiation 2008,		5
19	A Revised Transformation Protocol for Unconditionally Secure Secret Key Exchange. <i>Theory of Computing Systems</i> , 2008 , 42, 187-221	0.6	1

18	AN APPLICATION OF ESOP EXPRESSIONS TO SECURE COMPUTATIONS. <i>Journal of Circuits, Systems and Computers</i> , 2007 , 16, 191-198	0.9	5
17	Secure Multiparty Computations Using a Dial Lock 2007 , 499-510		5
16	Secure Multiparty Computations Using the 15 Puzzle. Lecture Notes in Computer Science, 2007, 255-266	0.9	7
15	Worst-Case Optimal Fingerprinting Codes for Non-threshold Collusion. <i>Lecture Notes in Computer Science</i> , 2006 , 203-216	0.9	
14	Secure Computations in a Minimal Model Using Multiple-Valued ESOP Expressions. <i>Lecture Notes in Computer Science</i> , 2006 , 547-554	0.9	1
13	Best Security Index for Digital Fingerprinting. Lecture Notes in Computer Science, 2005, 398-412	0.9	1
12	Necessary and Sufficient Numbers of Cards for the Transformation Protocol. <i>Lecture Notes in Computer Science</i> , 2004 , 92-101	0.9	2
11	Characterization of optimal key set protocols. <i>Discrete Applied Mathematics</i> , 2003 , 131, 213-236	1	7
10	A complete characterization of a family of key exchange protocols. <i>International Journal of Information Security</i> , 2002 , 1, 131-142	2.8	6
9	Necessary and Sufficient Numbers of Cards for Sharing Secret Keys on Hierarchical Groups. <i>Lecture Notes in Computer Science</i> , 2001 , 196-207	0.9	
8	Sharing secret keys along a Eulerian circuit. <i>Electronics and Communications in Japan, Part III:</i> Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi), 2000 , 83, 33-42		
7	Characterization of Optimal Key Set Protocols. <i>Lecture Notes in Computer Science</i> , 2000 , 273-285	0.9	
6	Dealing Necessary and Sufficient Numbers of Cards for Sharing a One-Bit Secret Key (Extended Abstract). <i>Lecture Notes in Computer Science</i> , 1999 , 389-401	0.9	5
5	Eulerian Secret Key Exchange. <i>Lecture Notes in Computer Science</i> , 1998 , 349-360	0.9	3
4	Actively revealing card attack on card-based protocols. <i>Natural Computing</i> ,1	1.3	5
3	Committed-format AND protocol using only random cuts. <i>Natural Computing</i> ,1	1.3	2
2	Card-Based ZKP for Connectivity: Applications to Nurikabe, Hitori, and Heyawake. <i>New Generation Computing</i> ,1	0.9	8
1	Coin-based Secure Computations. International Journal of Information Security,1	2.8	2