Akihiro Ito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557729/publications.pdf

Version: 2024-02-01

218592 302012 1,974 85 26 39 h-index citations g-index papers 96 96 96 1323 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Characteristic Control of n-Channel Organic Thin-Film Transistors Using a Dimethyl-Substituted Benzimidazole Dopant. ACS Applied Electronic Materials, 2021, 3, 5296-5306.	2.0	1
2	Bridgeâ€Lengthâ€Dependent Intramolecular Charge Transfer in Bis(dianisylamino)â€Terminated Oligo(p) Tj ETQo	10,0 0 rgB1	Overlock 1
3	Intramolecular Charge Transfer in Kekulé―and Nonâ€Kekuléâ€Bridged Bis(triarylamine) Radical Cations: Missing Key Compounds in Organic Mixedâ€Valence Systems. Chemistry - an Asian Journal, 2019, 14, 1692-1696.	1.7	14
4	Electronic and Photophysical Properties of 9,10â€Anthryleneâ€Bridged Bâ€Ï€â€N Donorâ€Acceptor Molecules with Solidâ€State Emission in the Yellow to Red Region. ChemPlusChem, 2019, 84, 1305-1313.	1.3	4
5	Frontispiece: Bridgeâ€Lengthâ€Dependent Intramolecular Charge Transfer in Bis(dianisylamino)â€Terminated Oligo(<i>p</i> â€phenylene)s. Chemistry - A European Journal, 2019, 25, .	1.7	0
6	Diazadibora[1.1.1.1] <i>m</i> , <i>p</i> , <i>m</i> , <i>p</i> ,	1.7	17
7	5,12â€Diaminotetracenes: The Impact of Orbital Interactions between the Acene Ï€ System and Amino Groups on Their Electronic States. Chemistry - A European Journal, 2018, 24, 16113-16125.	1.7	1
8	A dendritic oligoarylamine-substituted benzimidazole derivative as a useful n-type dopant. Journal of Materials Chemistry C, 2018, 6, 6429-6439.	2.7	7
9	Luminescent Superbenzene with Diarylamino and Diarylboryl Groups. Organic Letters, 2017, 19, 392-395.	2.4	15
10	Diarylamino- and Diarylboryl-Substituted Donor–Acceptor Pyrene Derivatives: Influence of Substitution Pattern on Their Photophysical Properties. Journal of Organic Chemistry, 2017, 82, 5111-5121.	1.7	47
11	Modulation of Openâ€shell Characters of Amineâ€inserted Diphenoquinones via Structural Modification. Chemistry - an Asian Journal, 2017, 12, 1889-1894.	1.7	4
12	Tetraaza[1.1.1.1]m,p,m,p-cyclophane Diradical Dications Revisited: Tuning Spin States by Confronted Arenes. Organic Letters, 2017, 19, 3115-3118.	2.4	16
13	Recognizing Throughâ€Bond and Throughâ€Space Selfâ€Exchange Charge/Spin Transfer Pathways in Bis(triarylamine) Radical Cations with Similar Geometrical Arrangements. Angewandte Chemie - International Edition, 2017, 56, 15712-15717.	7.2	32
14	Isolable Triradical Trication of Hexaaza[1 ₆]paracyclophane with Embedded 9,10-Anthrylenes: A Frustrated Three-Spin System. Organic Letters, 2017, 19, 4371-4374.	2.4	16
15	Recognizing Throughâ€Bond and Throughâ€Space Selfâ€Exchange Charge/Spin Transfer Pathways in Bis(triarylamine) Radical Cations with Similar Geometrical Arrangements. Angewandte Chemie, 2017, 129, 15918-15923.	1.6	17
16	Tetraaza[14]- and Octaaza[18]paracyclophane: Synthesis and Characterization of Their Neutral and Cationic States. Journal of Organic Chemistry, 2017, 82, 13348-13358.	1.7	21
17	Mesitylâ€Substituted Acene Radical Cations: Decent Stability Comparable to Their Neutral States under Ambient Light and Air. Chemistry - A European Journal, 2017, 23, 278-281.	1.7	11
18	Macrocyclic oligoarylamines as hole- and spin-containing scaffolds for molecule-based electronics. Journal of Materials Chemistry C, 2016, 4, 4614-4625.	2.7	28

#	Article	IF	CITATIONS
19	9,10â€Diaminoanthracenes Revisited: The Influence of <i>N</i> â€Substituents on Their Electronic States. Chemistry - A European Journal, 2016, 22, 18923-18931.	1.7	9
20	Radical Cation of an Oligoarylamine Having a Nitroxide Radical Substituent: A Coexistent Molecular System of Localized and Delocalized Spins. Journal of Organic Chemistry, 2016, 81, 11416-11420.	1.7	12
21	Synthesis and Characterization of 6,13â€Diaminoâ€6ubstituted Pentacenes. Chemistry - A European Journal, 2016, 22, 2165-2170.	1.7	8
22	Isolation and Characterization of Persistent Radical Cation and Dication of 2,7-Bis(dianisylamino)pyrene. Journal of Organic Chemistry, 2016, 81, 137-145.	1.7	22
23	Fluorescence enhancement of non-fluorescent triphenylamine: A recipe to utilize carborane cluster substituents. Chemical Physics Letters, 2015, 633, 190-194.	1.2	27
24	A Triphenylamine with Two Phenoxy Radicals Having Unusual Bonding Patterns and a Closedâ€ 5 hell Electronic State. Angewandte Chemie, 2015, 127, 8385-8388.	1.6	6
25	A Triphenylamine with Two Phenoxy Radicals Having Unusual Bonding Patterns and a Closedâ€Shell Electronic State. Angewandte Chemie - International Edition, 2015, 54, 8267-8270.	7.2	8
26	Electronic structure of tetraaza[1.1.1.1]o,p,o,p-cyclophane and its oxidized states. RSC Advances, 2014, 4, 39476-39483.	1.7	12
27	Fluorescent triphenylamine derivative: Theoretical design based on reduced vibronic coupling. Chemical Physics Letters, 2014, 615, 44-49.	1.2	20
28	Redox Modulation of <i>para</i> -Phenylenediamine by Substituted Nitronyl Nitroxide Groups and Their Spin States. Journal of Physical Chemistry A, 2013, 117, 12858-12867.	1.1	18
29	<i>Meta</i> – <i>Para</i> -Linked Octaaza[1 ₈]cyclophanes and Their Polycationic States. Journal of Organic Chemistry, 2013, 78, 2947-2956.	1.7	20
30	A Polymacrocyclic Oligoarylamine with a Pseudobeltane Motif: Towards a Cylindrical Multispin System. Angewandte Chemie - International Edition, 2012, 51, 12776-12781.	7.2	26
31	A Triphenylamine Doubleâ€Decker: From a Delocalized Radical Cation to a Diradical Dication with an Excited Triplet State. Angewandte Chemie - International Edition, 2012, 51, 9403-9406.	7.2	47
32	1,3,5â€Benzenetriamine Double―and Tripleâ€Decker Molecules. Angewandte Chemie - International Edition, 2012, 51, 8281-8285.	7.2	28
33	Spin-Delocalization in Charged States of <i>para</i> -Phenylene-Linked Dendritic Oligoarylamines. Chemistry of Materials, 2011, 23, 841-850.	3.2	31
34	Theoretical design of a hole-transporting molecule: hexaaza[16]parabiphenylophane. Journal of Materials Chemistry, 2011, 21, 6375.	6.7	28
35	Redox-switching of intramolecular magnetic interaction through π-conjugation mode change of 1,2-bis(4-dianisylamino)-1,2-bis(3-N-oxylamino)-substituted tetraarylethylene. Polyhedron, 2011, 30, 3106-3111.	1.0	3
36	Theoretical study on thermochemistry of solvated lithium-cation with propylene carbonate. Journal of Thermal Analysis and Calorimetry, 2010, 99, 139-144.	2.0	20

#	Article	IF	CITATIONS
37	<i>>para</i> àêPhenyleneâ€Bridged Spirobi(triarylamine) Dimer with Four Perpendicularly Linked Redoxâ€Active Ï€â€Systems. Chemistry - A European Journal, 2010, 16, 10866-10878.	1.7	11
38	Preparation and Characterization of <i>N</i> â€Anisylâ€Substituted Hexaaza[1 ₆]paracyclophane. Angewandte Chemie - International Edition, 2010, 49, 8205-8208.	7.2	56
39	Macrocyclic oligoarylamine-based spin system. Pure and Applied Chemistry, 2010, 82, 979-989.	0.9	27
40	Polycationic States of Oligoanilines Based on Wurster's Blue. European Journal of Organic Chemistry, 2009, 2009, 4441-4450.	1,2	23
41	A Spiro-Fused Triarylaminium Radical Cation with a Triplet Ground State. Angewandte Chemie, 2009, 121, 5895-5895.	1.6	0
42	A Spiro-Fused Triarylaminium Radical Cation with a Triplet Ground State. Angewandte Chemie - International Edition, 2009, 48, 5785-5785.	7.2	8
43	Electronic structures of newly designed two-dimensional high-spin organic polymers. Polyhedron, 2009, 28, 2080-2086.	1.0	8
44	High-spin polycationic states of an alternate meta-para-linked oligoarylamine incorporating two macrocycles. Chemical Communications, 2009, , 4524.	2.2	19
45	Trimacrocyclic arylamine and its polycationic states. Chemical Communications, 2008, , 6573.	2.2	34
46	An N-substituted aza[14]metacyclophane tetracation: a spin-quintet tetraradical with four para-phenylenediamine-based semi-quinone moieties. Chemical Communications, 2008, , 3242.	2.2	46
47	Intramolecular Charge Transfer in a Star-Shaped Oligoarylamine. Journal of Physical Chemistry A, 2007, 111, 2951-2956.	1.1	52
48	Intramolecular Spin Transfer in a Spiro-Fused Bis(triarylamine). Angewandte Chemie - International Edition, 2007, 46, 3300-3303.	7.2	38
49	The Poly(Radical Cation) of a Star-Shaped Oligoarylamine â€" Detection of Excited High-Spin States. European Journal of Organic Chemistry, 2007, 2007, 186-190.	1.2	11
50	Triradical Cation of p-Phenylenediamine Having Two Nitroxide Radical Groups:  Spin Alignment Mediated by Delocalized Spin. Journal of the American Chemical Society, 2006, 128, 2948-2953.	6.6	31
51	High-Spin Radical Cations of a Dendritic Oligoarylamine. Journal of Physical Chemistry A, 2006, 110, 4866-4872.	1.1	45
52	Structural and Magnetic Studies of Copper(II) and Zinc(II) Coordination Complexes Containing Nitroxide Radicals as Chelating Ligands. European Journal of Inorganic Chemistry, 2006, 2006, 3359-3368.	1.0	16
53	Synthesis and intramolecular magnetic interaction of triphenylamine derivatives with nitronyl nitroxide radicals. Polyhedron, 2005, 24, 2141-2147.	1.0	20
54	Tetraarylethylene having two nitroxide groups: redox-switching of through-bond magnetic interaction by conformation change. Chemical Communications, 2005, , 403.	2.2	29

#	Article	IF	CITATIONS
55	A Bindschedler's Green-Based Arylamine:  Its Polycations with High-Spin Multiplicity. Journal of Physical Chemistry A, 2004, 108, 5715-5720.	1.1	19
56	Occurrence and lithofacies of shungite: early Proterozoic carbon-rich rocks from Karelia, northwestern Russia. Journal of the Geological Society of Japan, 2004, 110, I-II.	0.2	0
57	A Spiro-Fused Triarylaminium Radical Cation with a Triplet Ground State. Angewandte Chemie, 2003, 115, 951-954.	1.6	18
58	A Spiro-Fused Triarylaminium Radical Cation with a Triplet Ground State. Angewandte Chemie - International Edition, 2003, 42, 921-924.	7.2	57
59	Molecular design toward spin-polarized nano-wire: oligomer model study. Polyhedron, 2003, 22, 1829-1836.	1.0	10
60	Facile Synthesis, Crystal Structures, and High-Spin Cationic States of All-para-Brominated Oligo(N-phenyl-m-aniline)s. Journal of Organic Chemistry, 2002, 67, 491-498.	1.7	86
61	The Tetraaza $[1.1.1.1]$ m,p,m,p-cyclophane Dication: A Triplet Diradical Having Twom-Phenylenediamine Radical Cations Linked by Twisted Benzenes. Angewandte Chemie - International Edition, 2000, 39, 1072-1075.	7.2	52
62	An instability condition for the Hartree-Fock solution of the infinite one-dimensional system with two-crossing bands. I. Singlet-instability check of metallic carbon nanotube. International Journal of Quantum Chemistry, 2000, 76, 574-582.	1.0	1
63	Do C36 and C36H6 molecules have [36-D6h]fullerene structure?. Chemical Physics Letters, 2000, 328, 32-38.	1.2	24
64	Thermodynamic stability in [36-D6h]fullerene. Chemical Physics Letters, 2000, 330, 281-286.	1.2	6
65	Electronic structures of C36 fulleride anions: C36â^' and C362â^'. Chemical Physics Letters, 1999, 315, 348-354.	1.2	16
66	N-Methyl-Substituted Aza[1n]metacyclophane:Â Preparation, Structure, and Properties. Journal of Organic Chemistry, 1999, 64, 8236-8241.	1.7	91
67	Triplet State of Würster's Blue-Based Di(cation radical). Organic Letters, 1999, 1, 741-743.	2.4	31
68	Preparation, X-ray crystal structures and electronic properties of N, N \hat{a} \in 2-bis (2,6-dinitrophenyl)-1,3-phenylenediamine and a complex with tetracyano-p-quinodimethane. Journal of Materials Chemistry, 1998, 8, 1799-1803.	6.7	4
69	Tetraaza[1.1.1.1]metacyclophane. New Journal of Chemistry, 1998, 22, 779-781.	1.4	66
70	Ab Initio MO Study of the Cationic States of 1,3,5-Triazine and Hexahydro-1,3,5-triazine. Journal of Physical Chemistry A, 1998, 102, 8021-8026.	1.1	6
71	Ab Initio CASSCF Study on Doublet and Quartet States of 1,3,5-Tris(methylene)benzene and 1,3,5-Benzenetriamine Trication. Bulletin of the Chemical Society of Japan, 1998, 71, 337-343.	2.0	10
72	On a description of the normal-state resistivity in alkali-metal doped C[sub 60]. , 1998, , .		1

#	Article	IF	Citations
73	Ferromagnetic Interaction between Aminium Radical Centers through m-Phenylene and m-1,3,5-Triazinediyl. Journal of Organic Chemistry, 1997, 62, 38-43.	1.7	17
74	Ab initio MO study of m-phenylenediamine and 2,4-diamino-1,3,5-triazine dication diradicals. Synthetic Metals, 1997, 85, 1777-1778.	2.1	1
75	Stability of a bipolaron in a one-dimensional system coupled with dopants. Journal of Physics Condensed Matter, 1996, 8, 771-779.	0.7	1
76	Synthesis of oligo(m-aniline). Tetrahedron Letters, 1995, 36, 8809-8812.	0.7	27
77	n-Alkyl Group-Substituted Poly(m-aniline)s: Syntheses and Magnetic Properties. Macromolecules, 1995, 28, 5618-5625.	2.2	62
78	The local-point interchain delocalization of the polaronic state of a one-dimensional polymer chain. Synthetic Metals, 1994, 66, 235-242.	2.1	3
79	Electrochemical oxidation of 1,3,5-tris(diphenylamino)benzene (TDAB) for polyradical material. Synthetic Metals, 1994, 66, 81-83.	2.1	2
80	Quartet states of non-kekul \tilde{A} © molecules 1,3,5-trimethylenebenzene and 1,3,5-triaminobenzene trication. Chemical Physics Letters, 1993, 202, 483-488.	1.2	30
81	Magnetic property of soluble poly(m-aniline). Solid State Communications, 1993, 87, 935-937.	0.9	26
82	Unrestricted Hartree-Fock method for infinite systems with antiferromagnetic array: Analysis of antiferromagnetic state oftrans-polyacetylene. International Journal of Quantum Chemistry, 1993, 45, 391-400.	1.0	2
83	Molecular Orbital Study on Quartet Molecules with Trigonal Axis of Symmetry. Molecular Crystals and Liquid Crystals, 1993, 232, 323-332.	0.3	12
84	Synthesis of polyaniline by use of the Ullmann reaction. Synthetic Metals, 1992, 48, 271-282.	2.1	15
85	ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene. Journal of the American Chemical Society, 1992, 114, 5994-5998.	6.6	122