Viet Van Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PANI-CNTs Microstructure with Interconnected NiO–NiOOH Particles as Selective Sensing Interface for Methanol Electrochemical Sensor. Journal of Cluster Science, 2023, 34, 1259-1267.	1.7	3
2	Combining SnO2-x and g-C3N4 nanosheets toward S-scheme heterojunction for high selectivity into green products of NO degradation reaction under visible light. Journal of Materiomics, 2022, 8, 1-8.	2.8	16
3	Enhanced heterogeneous photocatalytic perozone degradation of amoxicillin by ZnO modified TiO2 nanocomposites under visible light irradiation. Materials Science in Semiconductor Processing, 2022, 142, 106456.	1.9	15
4	Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review. Beilstein Journal of Nanotechnology, 2022, 13, 96-113.	1.5	12
5	S-Scheme α-Fe ₂ O ₃ /g-C ₃ N ₄ Nanocomposites as Heterojunction Photocatalysts for Antibiotic Degradation. ACS Applied Nano Materials, 2022, 5, 4506-4514.	2.4	59
6	Enhancing Green Product Generation of Photocatalytic NO Oxidation: A Case of WO ₃ Nanoplate/g-C ₃ N ₄ S-Scheme Heterojunction. Langmuir, 2022, 38, 4138-4146.	1.6	22
7	A fabrication of CNTs/TiO2/polyurethane films toward antibacterial and protective coatings. Progress in Organic Coatings, 2022, 167, 106838.	1.9	9
8	Direct fabrication of graphitic carbon nitride-wrapped titanate nanotube arrays toward photoelectrochemical water oxidation in neutral medium. Korean Journal of Chemical Engineering, 2022, 39, 2523-2531.	1.2	5
9	Localized surface plasmonic resonance role of silver nanoparticles in the enhancement of long-chain hydrocarbons of the CO2 reduction over Ag-gC3N4/ZnO nanorods photocatalysts. Chemical Engineering Science, 2021, 229, 116049.	1.9	34
10	Combustion and emission characteristics of spark and compression ignition engine fueled with 2,5-dimethylfuran (DMF): A comprehensive review. Fuel, 2021, 288, 119757.	3.4	22
11	A state-of-the-art review on emission characteristics of SI and CI engines fueled with 2,5-dimethylfuran biofuel. Environmental Science and Pollution Research, 2021, 28, 4918-4950.	2.7	20
12	Insight into the degradation of p-nitrophenol by visible-light-induced activation of peroxymonosulfate over Ag/ZnO heterojunction. Chemosphere, 2021, 268, 129291.	4.2	54
13	Activation of potassium peroxymonosulfate for rhodamine B photocatalytic degradation over visible-light-driven conjugated polyvinyl chloride/Bi2O3 hybrid structure. Sustainable Chemistry and Pharmacy, 2021, 19, 100367.	1.6	15
14	Visible-light-driven photocatalysis of anisotropic silver nanoparticles decorated on ZnO nanorods: Synthesis and characterizations. Journal of Environmental Chemical Engineering, 2021, 9, 105103.	3.3	57
15	Thermal Treatment of Polyvinyl Alcohol for Coupling MoS2 and TiO2 Nanotube Arrays toward Enhancing Photoelectrochemical Water Splitting Performance. Catalysts, 2021, 11, 857.	1.6	14
16	Constructing g-C3N4/SnO2 S-scheme heterojunctions for efficient photocatalytic NO removal and low NO2 generation. Journal of Science: Advanced Materials and Devices, 2021, 6, 551-559.	1.5	11
17	Facile ball-milling synthesis of TiO2 modified ZnO for efficient photocatalytic removal of atmospheric nitric oxide gas under solar light irradiation. Chemical Physics Letters, 2021, 775, 138642.	1.2	11
18	SnO _{2–<i>x</i>} Nanoparticles Decorated on Graphitic Carbon Nitride as S-Scheme Photocatalysts for Activation of Peroxymonosulfate. ACS Applied Nano Materials, 2021, 4, 9333-9343.	2.4	24

VIET VAN PHAM

#	Article	IF	CITATIONS
19	Revealing DeNOx and DeVOC Reactions via the Study of the Surface and Bandstructure of ZnSn(OH)6 Photocatalysts. Acta Materialia, 2021, 215, 117068.	3.8	20
20	Emerging 2D/0D g-C3N4/SnO2 S-scheme photocatalyst: New generation architectural structure of heterojunctions toward visible-light-driven NO degradation. Environmental Pollution, 2021, 286, 117510.	3.7	60
21	High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects: A case study of Ag/g-C3N4/ZnO nanocomposite materials. Chemosphere, 2021, 282, 130971.	4.2	39
22	Efficient nickel or copper oxides decorated graphene–polyaniline interface for application in selective methanol sensing. RSC Advances, 2021, 11, 28573-28580.	1.7	5
23	Design of NiOOH/PANI-Gr and NiOOH/PANI-CNTs Interfaces for Sensitive and Selective Methanol Electrochemical Sensors. Journal of the Electrochemical Society, 2021, 168, 107509.	1.3	4
24	Revisiting the Key Optical and Electrical Characteristics in Reporting the Photocatalysis of Semiconductors. ACS Omega, 2021, 6, 27379-27386.	1.6	29
25	Finite Element Method Application to Determine Appropriate Splitting Parameters for Dimensional Stone Quarries. Inzynieria Mineralna, 2021, 1, .	0.2	0
26	Visible-light-driven photocatalysis for methylene blue degradation and hydrogen evolution reaction: a case of black TiO2 nanotube arrays. Journal of the Australian Ceramic Society, 2020, 56, 849-857.	1.1	12
27	Green synthesis of Ag@SnO2 nanocomposites for enhancing photocatalysis of nitrogen monoxide removal under solar light irradiation. Catalysis Communications, 2020, 136, 105902.	1.6	21
28	Enhancing photocatalysis of NO gas degradation over g-C3N4 modified α-Bi2O3 microrods composites under visible light. Materials Letters, 2020, 281, 128637.	1.3	19
29	Straightforward Synthesis of SnO ₂ /Bi ₂ S ₃ /BiOCl–Bi ₂₄ O ₃₁ Cl _{10Composites for Drastically Enhancing Rhodamine B Photocatalytic Degradation under Visible Light. ACS Omega, 2020, 5, 20438-20449.}	×1.6	40
30	Visible-light-induced photo-Fenton degradation of rhodamine B over Fe2O3-diatomite materials. Journal of Science: Advanced Materials and Devices, 2020, 5, 308-315.	1.5	17
31	Aalyzing and selecting the typical propulsion systems for ocean supply vessels. , 2020, , .		9
32	Peroxymonosulfate Activation on a Hybrid Material of Conjugated PVC and TiO2 Nanotubes for Enhancing Degradation of Rhodamine B under Visible Light. Advances in Polymer Technology, 2020, 2020, 1-9.	0.8	3
33	Preparation of conjugated polyvinyl chloride/ <scp>TiO₂</scp> nanotubes for Rhodamine B photocatalytic degradation under visible light. Journal of Chemical Technology and Biotechnology, 2020, 95, 2707-2714.	1.6	21
34	Fast and simple synthesis of triangular silver nanoparticles under the assistance of light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 594, 124659.	2.3	23
35	Extraction of High Crystalline Nanocellulose from Biorenewable Sources of Vietnamese Agricultural Wastes. Journal of Polymers and the Environment, 2020, 28, 1465-1474.	2.4	53
36	A comparison study of the photocatalytic activity of ZnO nanoparticles for organic contaminants degradation under low-power UV-A lamp. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 015005.	0.7	16

VIET VAN PHAM

#	Article	IF	CITATIONS
37	Role of Light in the Improvement of Nanoparticle Synthesis. , 2020, , 103-120.		0
38	One-pot hydrothermal synthesis of Si doped TiO ₂ nanotubes from commercial material sources for visible light-driven photocatalytic activity. Materials Research Express, 2019, 6, 055006.	0.8	9
39	Investigation on Photocatalytic Removal of NO under Visible Light over Cr-Doped ZnO Nanoparticles. ACS Omega, 2019, 4, 12853-12859.	1.6	55
40	Adsorption and photocatalytic degradation of methylene blue by titanium dioxide nanotubes at different pH conditions. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2019, 10, 045011.	0.7	7
41	Effect of Cr Doping on Visible-Light-Driven Photocatalytic Activity of ZnO Nanoparticles. Journal of Electronic Materials, 2019, 48, 7378-7388.	1.0	17
42	Excellent visible light-driven photocatalytic performance and band alignment of g-C ₃ N ₄ /TiO ₂ nanotube heterostructures. Materials Research Express, 2019, 6, 085061.	0.8	7
43	Direct Synthesis of Reduced Graphene Oxide/TiO ₂ Nanotubes Composite from Graphite Oxide as a High-Efficiency Visible-Light-Driven Photocatalyst. Journal of Nanoscience and Nanotechnology, 2019, 19, 5195-5204.	0.9	10
44	Comment on "removal of hexavalent chromium by biochar supported nZVI composite: Batch and fixed-bed column evaluations, mechanisms, and secondary contamination prevention― Chemosphere, 2019, 233, 988-990.	4.2	9
45	High photocatalytic removal of NO gas over SnO2 nanoparticles under solar light. Environmental Chemistry Letters, 2019, 17, 527-531.	8.3	15
46	SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere, 2019, 215, 323-332.	4.2	108
47	Investigation of Some Characterizations of Black TiO(_2) Nanotubes Via Spectroscopic Methods. Communications in Physics, 2019, 29, 189.	0.0	1
48	Photoreduction route for Cu ₂ O/TiO ₂ nanotubes junction for enhanced photocatalytic activity. RSC Advances, 2018, 8, 12420-12427.	1.7	42
49	An improved green synthesis method and Escherichia coli antibacterial activity of silver nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2018, 182, 108-114.	1.7	22
50	Comprehensive resistive switching behavior of hybrid polyvinyl alcohol and TiO ₂ nanotube nanocomposites identified by combining experimental and density functional theory studies. Journal of Materials Chemistry C, 2018, 6, 1971-1979.	2.7	30
51	Understanding the effect of annealing temperature on crystalline structure, morphology, and photocatalytic activity of silver-loaded TiO2 nanotubes. Superlattices and Microstructures, 2018, 117, 305-316.	1.4	10
52	One-step hydrothermal synthesis and characterisation of SnO2 nanoparticle-loaded TiO2 nanotubes with high photocatalytic performance under sunlight. Journal of Materials Science, 2018, 53, 3364-3374.	1.7	30
53	Silver nanoparticle loaded TiO 2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 352, 106-112.	2.0	96
54	Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds. Ecotoxicology and Environmental Safety, 2018, 147, 55-63.	2.9	58

VIET VAN PHAM

#	Article	IF	CITATIONS
55	Hydrothermal synthesis, characterization, and photocatalytic activity of silicon doped TiO2 nanotubes. Superlattices and Microstructures, 2018, 123, 447-455.	1.4	29
56	Insight into the Photocatalytic Mechanism of Tin Dioxide/Polyaniline Nanocomposites for NO Degradation under Solar Light. ACS Applied Nano Materials, 2018, 1, 5786-5794.	2.4	39
57	Synthesis of a silver/TiO2 nanotube nanocomposite by gamma irradiation for enhanced photocatalytic activity under sunlight. Nuclear Instruments & Methods in Physics Research B, 2018, 429, 14-18.	0.6	13
58	THE FABRICATION OF Ag NANOPARTICLES LOADED TIO2 NANOTUBES BY PHOTOREDUCTION METHOD AND THEIR PHOTOCATALYTIC ACTIVITY. Science and Technology, 2018, 54, 199.	0.1	0
59	Efficient NO Photodegradation of Hydrothermally Synthesized TiO2 Nanotubes under Visible Light. Materials Science Materials Review, 2018, 2, .	0.1	0
60	Controlled Formation of Silver Nanoparticles on TiO2 Nanotubes by Photoreduction Method. Journal of Nanoscience and Nanotechnology, 2017, 17, 1497-1503.	0.9	5
61	The fabrication of the antibacterial paste based on TiO ₂ nanotubes and Ag nanoparticles-loaded TiO ₂ nanotubes powders. Journal of Experimental Nanoscience, 2017, 12, 220-231.	1.3	11
62	Synthesis and survey of the photocatalytic activity of SnO2/TiO2 nanotubes material under visible light. Science and Technology Development Journal - Natural Sciences, 2017, 1, 149-156.	0.0	0
63	Synthesis and evaluation of the methylene blue removal ability of Cu2O nanoparticles/TiO2 nanotubes heterostructure. Science and Technology Development Journal - Natural Sciences, 2017, 1, 115-122.	0.0	1
64	The High Photocatalytic Activity of SnO ₂ Nanoparticles Synthesized by Hydrothermal Method. Journal of Nanomaterials, 2016, 2016, 1-8.	1.5	43
65	<i>Fusarium</i> Antifungal Activities of Copper Nanoparticles Synthesized by a Chemical Reduction Method. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	51
66	First-principles calculations for hydrogenation of acceptor defects in Li-doped SnO ₂ . Materials Research Express, 2016, 3, 105901.	0.8	3
67	The directed preparation of TiO ₂ nanotubes film on FTO substrate via hydrothermal method for gas sensing application. AIMS Materials Science, 2016, 3, 460-469.	0.7	15
68	The Effect of Acid Treatment and Reactive Temperature on the Formation of TiO ₂ Nanotubes. Journal of Nanoscience and Nanotechnology, 2015, 15, 5202-5206.	0.9	27
69	The Controlled Hydrothermal Synthesis and Photocatalytic Characterization of TiO ₂ Nanorods: Effects of Time and Temperature. Advanced Science, Engineering and Medicine, 2014, 6, 214-220.	0.3	7
70	Anatase–rutile phase transformation of titanium dioxide bulk material: a DFT + <i>U</i> approach. Journal of Physics Condensed Matter, 2012, 24, 405501.	0.7	35