## Michele Ferrari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/655738/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of Nanoparticles on the Interfacial Properties of Liquid/Liquid and Liquid/Air Surface Layers.<br>Journal of Physical Chemistry B, 2006, 110, 19543-19551.                                                           | 1.2 | 311       |
| 2  | Influence of surface processes on the dilational visco-elasticity of surfactant solutions. Advances in<br>Colloid and Interface Science, 2005, 117, 75-100.                                                                 | 7.0 | 180       |
| 3  | Liquid–liquid interfacial properties of mixed nanoparticle–surfactant systems. Colloids and Surfaces<br>A: Physicochemical and Engineering Aspects, 2008, 323, 99-108.                                                      | 2.3 | 174       |
| 4  | Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloids and Interfaces, 2019, 3, 48.                                                                                                   | 0.9 | 140       |
| 5  | Superhydrophobic surfaces for applications in seawater. Advances in Colloid and Interface Science, 2015, 222, 291-304.                                                                                                      | 7.0 | 128       |
| 6  | Adsorption and partitioning of surfactants in liquid–liquid systems. Advances in Colloid and<br>Interface Science, 2000, 88, 129-177.                                                                                       | 7.0 | 125       |
| 7  | Effect of Hydrophilic and Hydrophobic Nanoparticles on the Surface Pressure Response of DPPC Monolayers. Journal of Physical Chemistry C, 2011, 115, 21715-21722.                                                           | 1.5 | 105       |
| 8  | Adsorption Kinetics of Alkylphosphine Oxides at Water/Hexane Interface. Journal of Colloid and<br>Interface Science, 1997, 186, 40-45.                                                                                      | 5.0 | 86        |
| 9  | DPPC–DOPC Langmuir monolayers modified by hydrophilic silica nanoparticles: Phase behaviour, structure and rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 174-183.                  | 2.3 | 85        |
| 10 | Adsorption Kinetics of Alkylphosphine Oxides at Water/Hexane Interface. Journal of Colloid and<br>Interface Science, 1997, 186, 46-52.                                                                                      | 5.0 | 79        |
| 11 | Mixed DPPC–cholesterol Langmuir monolayers in presence of hydrophilic silica nanoparticles.<br>Colloids and Surfaces B: Biointerfaces, 2013, 105, 284-293.                                                                  | 2.5 | 79        |
| 12 | Influence of silica nanoparticles on phase behavior and structural properties of DPPC—Palmitic acid<br>Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413,<br>280-287.        | 2.3 | 71        |
| 13 | A surface rheological study of non-ionic surfactants at the water–air interface and the stability of the corresponding thin foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 12-21. | 2.3 | 69        |
| 14 | Measurement of the Surface Dilational Viscoelasticity of Adsorbed Layers with a Capillary Pressure Tensiometer. Journal of Colloid and Interface Science, 2002, 255, 225-235.                                               | 5.0 | 62        |
| 15 | Biofouling control by superhydrophobic surfaces in shallow euphotic seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 369-375.                                                         | 2.3 | 62        |
| 16 | Influence of silica nanoparticles on dilational rheology of DPPC–palmitic acid Langmuir monolayers.<br>Soft Matter, 2012, 8, 3938.                                                                                          | 1.2 | 61        |
| 17 | Emulsions stabilized by the interaction of silica nanoparticles and palmitic acid at the water–hexane interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 333-341.                      | 2.3 | 58        |
| 18 | Surface rheology as a tool for the investigation of processes internal to surfactant adsorption layers. Faraday Discussions, 2005, 129, 125.                                                                                | 1.6 | 53        |

MICHELE FERRARI

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Interfacial properties of carbon particulate-laden liquid interfaces and stability of related foams and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 189-198.     | 2.3 | 53        |
| 20 | Adsorption Properties of C10E8at the Waterâ~'Hexane Interface. Journal of Physical Chemistry B, 1998, 102, 10521-10527.                                                                                      | 1.2 | 52        |
| 21 | Properties and structure of interfacial layers formed by hydrophilic silica dispersions and palmitic acid. Physical Chemistry Chemical Physics, 2012, 14, 607-615.                                           | 1.3 | 45        |
| 22 | Interaction of Carbon Black Particles and Dipalmitoylphosphatidylcholine at the Water/Air Interface:<br>Thermodynamics and Rheology. Journal of Physical Chemistry C, 2015, 119, 26937-26947.                | 1.5 | 43        |
| 23 | Interfacial Properties of Mixed DPPC–Hydrophobic Fumed Silica Nanoparticle Layers. Journal of Physical Chemistry C, 2015, 119, 21024-21034.                                                                  | 1.5 | 41        |
| 24 | Molecular reorientation in the adsorption of some CiEj at the water-air interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 455-463.                                     | 2.3 | 39        |
| 25 | Modelling of dilational visco-elasticity of adsorbed layers with multiple kinetic processes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 210-216.                       | 2.3 | 39        |
| 26 | Dynamic tensiometric characterization of espresso coffee beverage. Food Hydrocolloids, 2004, 18, 387-393.                                                                                                    | 5.6 | 36        |
| 27 | Surfactant adsorption at superhydrophobic surfaces. Applied Physics Letters, 2006, 89, 053104.                                                                                                               | 1.5 | 36        |
| 28 | Effect of silica nanoparticles on the interfacial properties of a canonical lipid mixture. Colloids and Surfaces B: Biointerfaces, 2015, 136, 971-980.                                                       | 2.5 | 36        |
| 29 | Interfacial properties of coffee oils. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 79-82.                                                                                   | 2.3 | 32        |
| 30 | Preparation of a superhydrophobic surface by mixed inorganic-organic coating. Applied Physics<br>Letters, 2006, 88, 203125.                                                                                  | 1.5 | 31        |
| 31 | Effect of the Incorporation of Nanosized Titanium Dioxide on the Interfacial Properties of<br>1,2-Dipalmitoyl- <i>sn</i> -glycerol-3-phosphocholine Langmuir Monolayers. Langmuir, 2017, 33,<br>10715-10725. | 1.6 | 31        |
| 32 | Dynamic Elasticity of Adsorption Layers in the Presence of Internal Reorientation Processes. Journal of Physical Chemistry B, 2001, 105, 195-203.                                                            | 1.2 | 30        |
| 33 | Amphiphobic coatings for antifouling in marine environment. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2016, 505, 158-164.                                                         | 2.3 | 30        |
| 34 | Surfactants and wetting at superhydrophobic surfaces: Water solutions and non aqueous liquids.<br>Advances in Colloid and Interface Science, 2010, 161, 22-28.                                               | 7.0 | 28        |
| 35 | Surface Rheology Investigation of the 2-D Phase Transition inn-Dodecanol Monolayers at the Waterâ°'Air Interface. Langmuir, 2003, 19, 10233-10240.                                                           | 1.6 | 27        |
| 36 | Nanoparticle laden interfacial layers and application to foams and solid foams. Colloids and Surfaces<br>A: Physicochemical and Engineering Aspects, 2013, 438, 132-140.                                     | 2.3 | 26        |

MICHELE FERRARI

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mammalian cell viability on hydrophobic and superhydrophobic fabrics. Materials Science and<br>Engineering C, 2019, 99, 241-247.                                                           | 3.8 | 25        |
| 38 | Soot particles at the aqueous interface and effects on foams stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 216-223.                              | 2.3 | 20        |
| 39 | Interaction of Particles with Langmuir Monolayers of 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphocholine: A<br>Matter of Chemistry?. Coatings, 2020, 10, 469.                                      | 1.2 | 19        |
| 40 | Characterization of surfactant aggregates at solid–liquid surfaces by atomic force microscopy.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249, 63-67.      | 2.3 | 18        |
| 41 | Project proposal for the investigation of particle-stabilised emulsions and foams by microgravity experiments. Microgravity Science and Technology, 2006, 18, 104-107.                     | 0.7 | 18        |
| 42 | Superhydrophobic Coatings from Recyclable Materials for Protection in a Real Sea Environment.<br>Coatings, 2019, 9, 303.                                                                   | 1.2 | 18        |
| 43 | Adsorption and surface rheology of n-dodecanol at the water/air interface. Journal of Colloid and<br>Interface Science, 2004, 272, 277-280.                                                | 5.0 | 17        |
| 44 | Surfactant induced complex formation and their effects on the interfacial properties of seawater.<br>Colloids and Surfaces B: Biointerfaces, 2014, 123, 701-709.                           | 2.5 | 17        |
| 45 | Potentiodynamic study of Al–Mg alloy with superhydrophobic coating in photobiologically<br>active/not active natural seawater. Colloids and Surfaces B: Biointerfaces, 2016, 137, 167-175. | 2.5 | 17        |
| 46 | Dynamic Surface Elasticity of Adsorption Layers in the Presence of a Surface Phase Transition from<br>Monomers to Large Aggregates. Langmuir, 2002, 18, 3592-3599.                         | 1.6 | 16        |
| 47 | Interfacial properties of coffee-based beverages. Food Hydrocolloids, 2007, 21, 1374-1378.                                                                                                 | 5.6 | 16        |
| 48 | High transmittance and highly amphiphobic coatings for environmental protection of solar panels.<br>Advances in Colloid and Interface Science, 2020, 286, 102309.                          | 7.0 | 16        |
| 49 | Carbon Soot–lonic Surfactant Mixed Layers at Water/Air Interfaces. Journal of Nanoscience and<br>Nanotechnology, 2015, 15, 3618-3625.                                                      | 0.9 | 13        |
| 50 | Carbon based porous materials from particle stabilized wet foams. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2015, 473, 24-31.                                   | 2.3 | 11        |
| 51 | Influence of n-hexanol and n-octanol on wetting properties and air entrapment at superhydrophobic surfaces. Physical Chemistry Chemical Physics, 2011, 13, 9452.                           | 1.3 | 10        |
| 52 | Surface properties of Vancomycin after interaction with laser beams. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2015, 480, 328-335.                              | 2.3 | 10        |
| 53 | Toxicity study in blood and tumor cells of laser produced medicines for application in fabrics.<br>Colloids and Surfaces B: Biointerfaces, 2016, 137, 91-103.                              | 2.5 | 10        |
| 54 | High Transmittance Superhydrophobic Coatings with Durable Self-Cleaning Properties. Coatings, 2021, 11, 493.                                                                               | 1.2 | 10        |

MICHELE FERRARI

| #  | Article                                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Laser beams resonant interaction with micro-droplets which have a controlled content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365, 83-88.                                                                                                                                                                                      | 2.3 | 9         |
| 56 | Regenerable Superhydrophobic Coatings for Biomedical Fabrics. Coatings, 2020, 10, 578.                                                                                                                                                                                                                                                                         | 1.2 | 8         |
| 57 | Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant<br>Films. Environmental Science & Technology, 2022, 56, 7308-7318.                                                                                                                                                                                       | 4.6 | 8         |
| 58 | Results of the Facility for Adsorption and Surface Tension (FAST) experiments onboard STS-107, in the framework of the project FASES. Microgravity Science and Technology, 2005, 16, 196-200.                                                                                                                                                                  | 0.7 | 6         |
| 59 | Adsorption properties of C10E8 at water/ hexane interface investigated onboard STS-107, by the FAST facility. Microgravity Science and Technology, 2005, 16, 201-204.                                                                                                                                                                                          | 0.7 | 6         |
| 60 | Results of microgravity investigation on adsorption and interfacial rheology of soluble surfactants from the experiment FAST onboard STS-107. Microgravity Science and Technology, 2006, 18, 112-116.                                                                                                                                                          | 0.7 | 6         |
| 61 | Effect of Temperature on the Dynamic Properties of Mixed Surfactant Adsorbed Layers at the Water/Hexane Interface under Low-Gravity Conditions. Colloids and Interfaces, 2020, 4, 27.                                                                                                                                                                          | 0.9 | 6         |
| 62 | Superhydrophobicity and Durability in Recyclable Polymers Coating. Sustainability, 2021, 13, 8244.                                                                                                                                                                                                                                                             | 1.6 | 6         |
| 63 | Evaluation of the impact of carbonaceous particles in the mechanical performance of lipid Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127974.                                                                                                                                                            | 2.3 | 6         |
| 64 | Sustainable Materials for Liquid Repellent Coatings. Coatings, 2021, 11, 1508.                                                                                                                                                                                                                                                                                 | 1.2 | 6         |
| 65 | Wetting of Single and Mixed Surfactant Solutions on Superhydrophobic Surfaces. Journal of Adhesion Science and Technology, 2009, 23, 483-492.                                                                                                                                                                                                                  | 1.4 | 5         |
| 66 | Switching surface wettability properties. Journal of Adhesion Science and Technology, 2014, 28, 791-814.                                                                                                                                                                                                                                                       | 1.4 | 5         |
| 67 | Messung der dynamischen GrenzflÄ <b>e</b> hen-spannung im System wĤ̃Yrige Tensidlösung/organisches<br>Lösungsmittel. Chemie-Ingenieur-Technik, 1998, 70, 89-99.                                                                                                                                                                                                | 0.4 | 4         |
| 68 | Dynamic Properties of Mixed Cationic/Nonionic Adsorbed Layers at the N-Hexane/Water Interface:<br>Capillary Pressure Experiments Under Low Gravity Conditions. Colloids and Interfaces, 2018, 2, 53.                                                                                                                                                           | 0.9 | 4         |
| 69 | 3D profilometry and cell viability studies for drug response screening. Materials Science and Engineering C, 2020, 115, 111142.                                                                                                                                                                                                                                | 3.8 | 4         |
| 70 | Dynamic capillary pressure measurements in the short time range by applying a fast growing drop technique. Microgravity Science and Technology, 2006, 18, 95-99.                                                                                                                                                                                               | 0.7 | 3         |
| 71 | Facility for adsorption and surface tension studies (FAST) on board of shuttle STS-107 mission:<br>Determination of the surface dilational modulus as a function of concentration and temperature for<br>aqueous solutions of dodecyl-dimethyl-phosphine-oxide, in the 0.01–0.32 Hz frequency range.<br>Microgravity Science and Technology, 2006, 18, 100,103 | 0.7 | 1         |
| 72 | Interfacial Dilational Viscoelasticity of Adsorption Layers at the Hydrocarbon/Water Interface: The Fractional Maxwell Model. Colloids and Interfaces, 2019, 3, 66.                                                                                                                                                                                            | 0.9 | 1         |

| #  | Article                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Mammalian Cell Spheroids on Mixed Organic–Inorganic Superhydrophobic Coating. Molecules, 2022,<br>27, 1247.                          | 1.7 | 1         |
| 74 | 97. Dynamische GrenzflÄ <b>e</b> henspannung tensidhaltiger Flļssig/Fluid-Systeme. Chemie-Ingenieur-Technik,<br>1996, 68, 1127-1128. | 0.4 | 0         |