Dong Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/65572/dong-wang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

663 73,121 254 120 h-index g-index citations papers 87,956 8.71 12.2 719 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
663	Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. <i>Chemical Communications</i> , 2001 , 1740-1	5.8	5057
662	Aggregation-Induced Emission: Together We Shine, United We Soar!. <i>Chemical Reviews</i> , 2015 , 115, 1171	&9.4 0	4745
661	Aggregation-induced emission. <i>Chemical Society Reviews</i> , 2011 , 40, 5361-88	58.5	4535
660	Aggregation-induced emission: phenomenon, mechanism and applications. <i>Chemical Communications</i> , 2009 , 4332-53	5.8	2999
659	Aggregation-induced emission: the whole is more brilliant than the parts. <i>Advanced Materials</i> , 2014 , 26, 5429-79	24	2216
658	Bioprobes based on AIE fluorogens. <i>Accounts of Chemical Research</i> , 2013 , 46, 2441-53	24.3	1406
657	The golden age of transfer hydrogenation. <i>Chemical Reviews</i> , 2015 , 115, 6621-86	68.1	1099
656	AIE macromolecules: syntheses, structures and functionalities. <i>Chemical Society Reviews</i> , 2014 , 43, 4494	I- 5 &.3	1025
655	Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. <i>Chemistry of Materials</i> , 2003 , 15, 1535-1546	9.6	983
654	Biosensing by luminogens with aggregation-induced emission characteristics. <i>Chemical Society Reviews</i> , 2015 , 44, 4228-38	58.5	941
653	Fluorescent bio/chemosensors based on silole and tetraphenylethene luminogens with aggregation-induced emission feature. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1858		751
652	Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state. <i>Advanced Materials</i> , 2010 , 22, 2159-63	24	723
651	Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. Journal of Physical Chemistry C, 2009 , 113, 15845-15853	3.8	699
650	Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. <i>Journal of Materials Chemistry</i> , 2012 , 22, 23726		646
649	A photostable AIE luminogen for specific mitochondrial imaging and tracking. <i>Journal of the American Chemical Society</i> , 2013 , 135, 62-5	16.4	619
648	Fast-growing field of magnetically recyclable nanocatalysts. <i>Chemical Reviews</i> , 2014 , 114, 6949-85	68.1	608
647	Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. Journal of Physical Chemistry C, 2010 , 114, 6090-6099	3.8	584

646	Specific light-up bioprobes based on AlEgen conjugates. <i>Chemical Society Reviews</i> , 2015 , 44, 2798-811	58.5	576
645	Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications. <i>Advanced Functional Materials</i> , 2012 , 22, 771-779	15.6	545
644	Two-dimensional metal-organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7241-4	16.4	527
643	Efficient blue emission from siloles. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2974-2978		514
642	Specific detection of D-glucose by a tetraphenylethene-based fluorescent sensor. <i>Journal of the American Chemical Society</i> , 2011 , 133, 660-3	16.4	508
641	Real-time monitoring of cell apoptosis and drug screening using fluorescent light-up probe with aggregation-induced emission characteristics. <i>Journal of the American Chemical Society</i> , 2012 , 134, 1797	· 1 ·84	481
640	Fluorescent "light-up" bioprobes based on tetraphenylethylene derivatives with aggregation-induced emission characteristics. <i>Chemical Communications</i> , 2006 , 3705-7	5.8	458
639	Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. <i>Applied Physics Letters</i> , 2007 , 91, 011111	3.4	424
638	Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 1780-6	16.4	404
637	Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2546-54	16.4	389
636	Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission. <i>Chemistry - A European Journal</i> , 2014 , 20, 15349-53	4.8	386
635	Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives. <i>ACS Sensors</i> , 2017 , 2, 1382-1399	9.2	384
634	Aggregation-Induced Emission: New Vistas at the Aggregate Level. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9888-9907	16.4	373
633	Luminogenic polymers with aggregation-induced emission characteristics. <i>Progress in Polymer Science</i> , 2012 , 37, 182-209	29.6	363
632	Aggregation-induced emission: fundamental understanding and future developments. <i>Materials Horizons</i> , 2019 , 6, 428-433	14.4	359
631	Full-range intracellular pH sensing by an aggregation-induced emission-active two-channel ratiometric fluorogen. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4926-9	16.4	357
630	Specific detection of integrin 🖽 by light-up bioprobe with aggregation-induced emission characteristics. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9569-72	16.4	353
629	The recent development of efficient Earth-abundant transition-metal nanocatalysts. <i>Chemical Society Reviews</i> , 2017 , 46, 816-854	58.5	351

628	Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. <i>Chemical Communications</i> , 2007 , 40-2	5.8	345
627	AIE Luminogens for Bioimaging and Theranostics: From Organelles to Animals. <i>CheM</i> , 2017 , 3, 56-91	16.2	337
626	Structural control of the photoluminescence of silole regioisomers and their utility as sensitive regiodiscriminating chemosensors and efficient electroluminescent materials. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 10061-6	3.4	336
625	Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. <i>Chemical Communications</i> , 2010 , 46, 2221-3	5.8	327
624	Achieving High-Performance Nondoped OLEDs with Extremely Small Efficiency Roll-Off by Combining Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence. <i>Advanced Functional Materials</i> , 2017 , 27, 1606458	15.6	319
623	What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. <i>Chemical Science</i> , 2012 , 3, 2737	9.4	297
622	Supramolecular materials based on AIE luminogens (AIEgens): construction and applications. <i>Chemical Society Reviews</i> , 2020 , 49, 1144-1172	58.5	292
621	AIE luminogens: emission brightened by aggregation. <i>Materials Today</i> , 2015 , 18, 365-377	21.8	291
620	Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. <i>Scientific Reports</i> , 2013 , 3, 1150	4.9	290
619	Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019 , 141, 5359-5368	16.4	276
618	Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. <i>Chemical Science</i> , 2015 , 6, 4438-4444	9.4	266
617	Room-temperature phosphorescence from organic aggregates. <i>Nature Reviews Materials</i> , 2020 , 5, 869-6	8 \$ \$.3	256
616	Real-Time and High-Resolution Bioimaging with Bright Aggregation-Induced Emission Dots in Short-Wave Infrared Region. <i>Advanced Materials</i> , 2018 , 30, e1706856	24	239
615	Highly Efficient Nondoped OLEDs with Negligible Efficiency Roll-Off Fabricated from Aggregation-Induced Delayed Fluorescence Luminogens. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 12971-12976	16.4	239
614	Macrocycles and cages based on tetraphenylethylene with aggregation-induced emission effect. <i>Chemical Society Reviews</i> , 2018 , 47, 7452-7476	58.5	236
613	Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets. <i>Chemical Science</i> , 2017 , 8, 5440-5446	9.4	234
612	A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 17245-54	9.5	234
611	Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. <i>Chemical Science</i> , 2018 , 9, 3685-3693	9.4	227

(2018-2003)

610	Silole-Containing Polyacetylenes. Synthesis, Thermal Stability, Light Emission, Nanodimensional Aggregation, and Restricted Intramolecular Rotation. <i>Macromolecules</i> , 2003 , 36, 1108-1117	5.5	220
609	Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. <i>Advanced Materials</i> , 2013 , 25, 6083-8	24	218
608	A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. <i>Nature Communications</i> , 2018 , 9, 2963	17.4	216
607	Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. <i>Nature Communications</i> , 2018 , 9, 1848	17.4	216
606	A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1526-36	10.1	213
605	Highly Efficient Circularly Polarized Electroluminescence from Aggregation-Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. <i>Advanced Functional Materials</i> , 2018 , 28, 1800051	15.6	209
604	Targeting Negative Surface Charges of Cancer Cells by Multifunctional Nanoprobes. <i>Theranostics</i> , 2016 , 6, 1887-98	12.1	207
603	Tetraphenylpyrazine-based AIEgens: facile preparation and tunable light emission. <i>Chemical Science</i> , 2015 , 6, 1932-1937	9.4	206
602	Clusterization-triggered emission: Uncommon luminescence from common materials. <i>Materials Today</i> , 2020 , 32, 275-292	21.8	206
601	Locking the phenyl rings of tetraphenylethene step by step: understanding the mechanism of aggregation-induced emission. <i>Chemical Communications</i> , 2012 , 48, 10675-7	5.8	204
600	Aggregation-induced emission: a coming-of-age ceremony at the age of eighteen. <i>Science China Chemistry</i> , 2019 , 62, 1090-1098	7.9	203
599	Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. <i>ACS Nano</i> , 2018 , 12, 8145-8159	16.7	199
598	Hyperbranched Conjugated Polysiloles: Synthesis, Structure, Aggregation-Enhanced Emission, Multicolor Fluorescent Photopatterning, and Superamplified Detection of Explosives. <i>Macromolecules</i> , 2010 , 43, 4921-4936	5.5	196
597	Bright and Photostable Organic Fluorescent Dots with Aggregation-Induced Emission Characteristics for Noninvasive Long-Term Cell Imaging. <i>Advanced Functional Materials</i> , 2014 , 24, 635-6	4 3 5.6	195
596	Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. <i>Chemical Science</i> , 2011 , 2, 672-675	9.4	192
595	Aggregation-Induced Emission Luminogens for Activity-Based Sensing. <i>Accounts of Chemical Research</i> , 2019 , 52, 2559-2570	24.3	189
594	Synthesis, solvatochromism, aggregation-induced emission and cell imaging of tetraphenylethene-containing BODIPY derivatives with large Stokes shifts. <i>Chemical Communications</i> , 2012 , 48, 10099-101	5.8	188
593	Highly Efficient Photosensitizers with Far-Red/Near-Infrared Aggregation-Induced Emission for In Vitro and In Vivo Cancer Theranostics. <i>Advanced Materials</i> , 2018 , 30, e1802105	24	186

592	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. <i>Nature Communications</i> , 2019 , 10, 768	17.4	184
591	Poly[(maleic anhydride)-alt-(vinyl acetate)]: A Pure Oxygenic Nonconjugated Macromolecule with Strong Light Emission and Solvatochromic Effect. <i>Macromolecules</i> , 2015 , 48, 64-71	5.5	183
590	Quantitation, visualization, and monitoring of conformational transitions of human serum albumin by a tetraphenylethene derivative with aggregation-induced emission characteristics. <i>Analytical Chemistry</i> , 2010 , 82, 7035-43	7.8	182
589	Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. <i>Chemical Society Reviews</i> , 2020 , 49, 21-31	58.5	179
588	AlEgens for biological process monitoring and disease theranostics. <i>Biomaterials</i> , 2017 , 146, 115-135	15.6	174
587	Mitochondrion-Anchoring Photosensitizer with Aggregation-Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation. <i>Advanced Materials</i> , 2017 , 29, 1606167	24	173
586	Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice. <i>ACS Nano</i> , 2017 , 11, 7177-7188	16.7	173
585	Evaluation of Structure-Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16781-16789	16.4	168
584	Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. <i>Chemical Communications</i> , 2014 , 50, 8757-60	5.8	168
583	A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 4640	7.1	167
582	Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. <i>Nature Communications</i> , 2020 , 11, 1255	17.4	162
581	Unusual Aggregation-Induced Emission of a Coumarin Derivative as a Result of the Restriction of an Intramolecular Twisting Motion. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 14492-7	16.4	161
580	Fluorescent Light-Up Detection of Amine Vapors Based on Aggregation-Induced Emission. <i>ACS Sensors</i> , 2016 , 1, 179-184	9.2	160
579	An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by Bwitch + knobleffect. <i>Chemical Science</i> , 2012 , 3, 1804	9.4	159
578	Designing Efficient and Ultralong Pure Organic Room-Temperature Phosphorescent Materials by Structural Isomerism. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7997-8001	16.4	158
577	Full emission color tuning in luminogens constructed from tetraphenylethene, benzo-2,1,3-thiadiazole and thiophene building blocks. <i>Chemical Communications</i> , 2011 , 47, 8847-9	5.8	158
576	A fluorescent light-up probe with "AIE + ESIPT" characteristics for specific detection of lysosomal esterase. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 3438-3442	7.3	156
575	Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. <i>Materials Horizons</i> , 2016 , 3, 283-293	14.4	156

(2018-2016)

574	Activatable Fluorescent Nanoprobe with Aggregation-Induced Emission Characteristics for Selective In Vivo Imaging of Elevated Peroxynitrite Generation. <i>Advanced Materials</i> , 2016 , 28, 7249-56	24	151
573	One-Step Formulation of Targeted Aggregation-Induced Emission Dots for Image-Guided Photodynamic Therapy of Cholangiocarcinoma. <i>ACS Nano</i> , 2017 , 11, 3922-3932	16.7	150
572	AIE-active theranostic system: selective staining and killing of cancer cells. <i>Chemical Science</i> , 2017 , 8, 1822-1830	9.4	149
571	Clustering-Triggered Emission and Persistent Room Temperature Phosphorescence of Sodium Alginate. <i>Biomacromolecules</i> , 2018 , 19, 2014-2022	6.9	149
57°	Gelation process visualized by aggregation-induced emission fluorogens. <i>Nature Communications</i> , 2016 , 7, 12033	17.4	149
569	Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. <i>ACS Nano</i> , 2018 , 12, 11282-1	1293	148
568	Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. <i>Nature Communications</i> , 2018 , 9, 3044	17.4	146
567	AlEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg sensing. <i>Chemical Science</i> , 2017 , 8, 2047-2055	9.4	145
566	Room temperature phosphorescence from natural products: Crystallization matters. <i>Science China Chemistry</i> , 2013 , 56, 1178-1182	7.9	142
565	Ionization and Anion-Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16974-16979	16.4	140
564	Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. <i>ACS Nano</i> , 2018 , 12, 7936-7945	16.7	140
563	Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine <i>ACS Applied Bio Materials</i> , 2018 , 1, 1768-1786	4.1	140
562	Aggregation induced blue-shifted emissionthe molecular picture from a QM/MM study. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5545-52	3.6	138
561	Simple biosensor with high selectivity and sensitivity: thiol-specific biomolecular probing and intracellular imaging by AIE fluorogen on a TLC plate through a thiol-ene click mechanism. <i>Chemistry - A European Journal</i> , 2010 , 16, 8433-8	4.8	138
560	Multiscale Humidity Visualization by Environmentally Sensitive Fluorescent Molecular Rotors. <i>Advanced Materials</i> , 2017 , 29, 1703900	24	135
559	Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical properties and ordered microstructures. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7387		134
558	In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5612-5616	16.4	133
557	Multiple yet Controllable Photoswitching in a Single AIEgen System. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1966-1975	16.4	133

556	A Mitochondrion-Specific Photoactivatable Fluorescence Turn-On AIE-Based Bioprobe for Localization Super-Resolution Microscope. <i>Advanced Materials</i> , 2016 , 28, 5064-71	24	131
555	Light-Up Probe for Targeted and Activatable Photodynamic Therapy with Real-Time In Situ Reporting of Sensitizer Activation and Therapeutic Responses. <i>Advanced Functional Materials</i> , 2015 , 25, 6586-6595	15.6	131
554	Why Do Simple Molecules with "Isolated" Phenyl Rings Emit Visible Light?. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16264-16272	16.4	130
553	A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water. <i>Chemical Communications</i> , 2009 , 4974-6	5.8	130
552	Facile Synthesis of Red/NIR AIE Luminogens with Simple Structures, Bright Emissions, and High Photostabilities, and Their Applications for Specific Imaging of Lipid Droplets and Image-Guided Photodynamic Therapy. <i>Advanced Functional Materials</i> , 2017 , 27, 1704039	15.6	129
551	Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching?. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 1125-1129	7.8	123
550	Strategies to Enhance the Photosensitization: Polymerization and the Donor-Acceptor Even-Odd Effect. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15189-15193	16.4	122
549	Room Temperature One-Step Conversion from Elemental Sulfur to Functional Polythioureas through Catalyst-Free Multicomponent Polymerizations. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6156-6163	16.4	121
548	Dramatic Differences in Aggregation-Induced Emission and Supramolecular Polymerizability of Tetraphenylethene-Based Stereoisomers. <i>Journal of the American Chemical Society</i> , 2017 , 139, 10150-1	015 0	121
547	Aggregation-Induced Emission Luminogen with Deep-Red Emission for Through-Skull Three-Photon Fluorescence Imaging of Mouse. <i>ACS Nano</i> , 2017 , 11, 10452-10461	16.7	120
546	Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 15160-4	16.4	120
545	Solvent-free synthesis of 1,4-disubstituted 1,2,3-triazoles using a low amount of Cu(PPh3)2NO3 complex. <i>Green Chemistry</i> , 2010 , 12, 2120	10	120
544	Corannulene-Incorporated AIE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo. <i>Advanced Materials</i> , 2018 , 30, e1801065	24	120
543	Boosting Non-Radiative Decay to Do Useful Work: Development of a Multi-Modality Theranostic System from an AlEgen. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5628-5632	16.4	119
542	Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12473-12477	16.4	119
541	Functionality and versatility of aggregation-induced emission luminogens. <i>Applied Physics Reviews</i> , 2017 , 4, 021307	17.3	118
540	2,5-bis(4-alkoxycarbonylphenyl)-1,4-diaryl-1,4-dihydropyrrolo[3,2-]pyrrole () AIEgens: tunable RIR and TICT characteristics and their multifunctional applications. <i>Chemical Science</i> , 2017 , 8, 7258-7267	9.4	118
539	Fabrication of fluorescent silica nanoparticles hybridized with AIE luminogens and exploration of their applications as nanobiosensors in intracellular imaging. <i>Chemistry - A European Journal</i> , 2010 , 16, 4266-72	4.8	118

(2015-2020)

538	Aggregation-enhanced theranostics: AIE sparkles in biomedical field. <i>Aggregate</i> , 2020 , 1, 80-106	22.9	118
537	Molecular luminogens based on restriction of intramolecular motions through host-guest inclusion for cell imaging. <i>Chemical Communications</i> , 2014 , 50, 1725-7	5.8	115
536	NIR-II AlEgens: A Win-Win Integration towards Bioapplications. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 7476-7487	16.4	115
535	Spontaneous Amino-yne Click Polymerization: A Powerful Tool toward Regio- and Stereospecific Poly(Eminoacrylate)s. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5437-5443	16.4	114
534	Photoluminescence and electroluminescence of hexaphenylsilole are enhanced by pressurization in the solid state. <i>Chemical Communications</i> , 2008 , 2989-91	5.8	114
533	Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. <i>Polymer Chemistry</i> , 2017 , 8, 1722-1727	4.9	113
532	AIE polymers: Synthesis and applications. <i>Progress in Polymer Science</i> , 2020 , 100, 101176	29.6	113
531	AIE Nanoparticles with High Stimulated Emission Depletion Efficiency and Photobleaching Resistance for Long-Term Super-Resolution Bioimaging. <i>Advanced Materials</i> , 2017 , 29, 1703643	24	112
530	Aggregate Science: From Structures to Properties. Advanced Materials, 2020, 32, e2001457	24	112
529	Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application. <i>Chemical Science</i> , 2012 , 3, 549-558	9.4	111
528	Hyperbranched conjugated poly(tetraphenylethene): synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. <i>Polymer Chemistry</i> , 2012 , 3, 1481	4.9	111
527	An All-Round Athlete on the Track of Phototheranostics: Subtly Regulating the Balance between Radiative and Nonradiative Decays for Multimodal Imaging-Guided Synergistic Therapy. <i>Advanced Materials</i> , 2020 , 32, e2003210	24	111
526	Constitutional Isomerization Enables Bright NIR-II AIEgen for Brain-Inflammation Imaging. <i>Advanced Functional Materials</i> , 2020 , 30, 1908125	15.6	109
525	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. <i>ACS Nano</i> , 2019 , 13, 11283-11293	16.7	108
524	Real-Time Monitoring of Hierarchical Self-Assembly and Induction of Circularly Polarized Luminescence from Achiral Luminogens. <i>ACS Nano</i> , 2019 , 13, 3618-3628	16.7	108
523	Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1800477	10.1	107
522	Specific Fluorescence Probes for Lipid Droplets Based on Simple AIEgens. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 10193-200	9.5	107
521	Real-Time, Quantitative Lighting-up Detection of Telomerase in Urines of Bladder Cancer Patients by AIEgens. <i>Analytical Chemistry</i> , 2015 , 87, 6822-7	7.8	106

520	Dendritic catalysisBasic concepts and recent trends. Coordination Chemistry Reviews, 2013, 257, 2317-2	23 34 .2	106
519	Catalyst-Free, Atom-Economic, Multicomponent Polymerizations of Aromatic Diynes, Elemental Sulfur, and Aliphatic Diamines toward Luminescent Polythioamides. <i>Macromolecules</i> , 2015 , 48, 7747-77	754 ^{:5}	104
518	Photoactivatable aggregation-induced emission probes for lipid droplets-specific live cell imaging. <i>Chemical Science</i> , 2017 , 8, 1763-1768	9.4	103
517	Exploration of biocompatible AIEgens from natural resources. <i>Chemical Science</i> , 2018 , 9, 6497-6502	9.4	103
516	Light-enhanced bacterial killing and wash-free imaging based on AIE fluorogen. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 7180-8	9.5	102
515	Direct evidence to support the restriction of intramolecular rotation hypothesis for the mechanism of aggregation-induced emission: temperature resolved terahertz spectra of tetraphenylethene. <i>Materials Horizons</i> , 2014 , 1, 251-258	14.4	101
514	An efficient approach to homocoupling of terminal alkynes: Solvent-free synthesis of 1,3-diynes using catalytic Cu(II) and base. <i>Green Chemistry</i> , 2010 , 12, 45-48	10	100
513	Malonitrile-Functionalized Tetraphenylpyrazine: Aggregation-Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. <i>Advanced Functional Materials</i> , 2018 , 28, 17046	58 ⁵ 5.6	100
512	Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. <i>ACS Nano</i> , 2020 , 14, 854-866	16.7	99
511	Theranostics based on AlEgens. <i>Theranostics</i> , 2018 , 8, 4925-4956	12.1	99
510	Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 4775-4779	7.1	96
509	Aggregation-induced chirality, circularly polarized luminescence, and helical self-assembly of a leucine-containing AIE luminogen. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 2399-2404	7.1	96
508	A Luminogen with Aggregation-Induced Emission Characteristics for Wash-Free Bacterial Imaging, High-Throughput Antibiotics Screening and Bacterial Susceptibility Evaluation. <i>Advanced Materials</i> , 2015 , 27, 4931-7	24	96
507	An AIE-Active Conjugated Polymer with High ROS-Generation Ability and Biocompatibility for Efficient Photodynamic Therapy of Bacterial Infections. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9952-9956	16.4	95
506	A fluorescent light-up probe with AIE characteristics for specific mitochondrial imaging to identify differentiating brown adipose cells. <i>Chemical Communications</i> , 2014 , 50, 8312-5	5.8	94
505	Magnetic and dendritic catalysts. Accounts of Chemical Research, 2015, 48, 1871-80	24.3	93
504	A new luminescent metallorganic framework based on dicarboxyl-substituted tetraphenylethene for efficient detection of nitro-containing explosives and antibiotics in aqueous media. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2983-2988	7.1	93

(2010-2019)

502	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15111-15120	16.4	93
501	An AIE-active fluorescence turn-on bioprobe mediated by hydrogen-bonding interaction for highly sensitive detection of hydrogen peroxide and glucose. <i>Chemical Communications</i> , 2016 , 52, 10076-9	5.8	92
500	Aggregation effects on the optical emission of 1,1,2,3,4,5-hexaphenylsilole (HPS): a QM/MM study. Journal of Physical Chemistry A, 2014 , 118, 9094-104	2.8	92
499	AlEgen-based theranostic system: targeted imaging of cancer cells and adjuvant amplification of antitumor efficacy of paclitaxel. <i>Chemical Science</i> , 2017 , 8, 2191-2198	9.4	91
498	A selective and light-up fluorescent probe for Egalactosidase activity detection and imaging in living cells based on an AIE tetraphenylethylene derivative. <i>Chemical Communications</i> , 2017 , 53, 4505-45	5 5 8	90
497	Highly fluorescent and photostable probe for long-term bacterial viability assay based on aggregation-induced emission. <i>Advanced Healthcare Materials</i> , 2014 , 3, 88-96	10.1	90
496	Mitochondrial Imaging with Combined Fluorescence and Stimulated Raman Scattering Microscopy Using a Probe of the Aggregation-Induced Emission Characteristic. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17022-17030	16.4	90
495	AIE-active polymers for explosive detection. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2017 , 35, 141-154	3.5	89
494	Nanocrystallization: A Unique Approach to Yield Bright Organic Nanocrystals for Biological Applications. <i>Advanced Materials</i> , 2017 , 29, 1604100	24	88
493	Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AIEgens at Ultralow Concentration. <i>Chemistry of Materials</i> , 2018 , 30, 4778-4787	9.6	88
492	Type I photosensitizers based on phosphindole oxide for photodynamic therapy: apoptosis and autophagy induced by endoplasmic reticulum stress. <i>Chemical Science</i> , 2020 , 11, 3405-3417	9.4	87
491	A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 838-845	7.8	87
490	Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. <i>ACS Nano</i> , 2020 , 14, 12045-12053	16.7	87
489	Engineering Sensor Arrays Using Aggregation-Induced Emission Luminogens for Pathogen Identification. <i>Advanced Functional Materials</i> , 2019 , 29, 1805986	15.6	87
488	Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. <i>Chemical Reviews</i> , 2020 , 120, 4534-4577	68.1	86
487	A highly selective AIE fluorogen for lipid droplet imaging in live cells and green algae. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 2013-2019	7.3	86
486	Construction of Functional Macromolecules with Well-Defined Structures by Indium-Catalyzed Three-Component Polycoupling of Alkynes, Aldehydes, and Amines. <i>Macromolecules</i> , 2013 , 46, 3246-32.	5 6 5	85
485	Label-free fluorescence detection of mercury(II) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative. <i>Analyst, The</i> , 2010 , 135, 3002-7	5	85

484	Ultrafast Delivery of Aggregation-Induced Emission Nanoparticles and Pure Organic Phosphorescent Nanocrystals by Saponin Encapsulation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14792-14799	16.4	84
483	Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AIEgens. <i>Advanced Materials</i> , 2020 , 32, e1906493	24	84
482	Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatom-Containing AIE Systems. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14911-14914	16.4	84
481	A targeted theranostic platinum(IV) prodrug containing a luminogen with aggregation-induced emission (AIE) characteristics for in situ monitoring of drug activation. <i>Chemical Communications</i> , 2014 , 50, 3868-70	5.8	84
480	Discriminatory detection of cysteine and homocysteine based on dialdehyde-functionalized aggregation-induced emission fluorophores. <i>Chemistry - A European Journal</i> , 2013 , 19, 613-20	4.8	84
479	Multifunctional AIEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and Bacterial Imaging. <i>Advanced Functional Materials</i> , 2018 , 28, 1704589	15.6	84
478	Tunable Mechanoresponsive Self-Assembly of an Amide-Linked Dyad with Dual Sensitivity of Photochromism and Mechanochromism. <i>Advanced Functional Materials</i> , 2017 , 27, 1701210	15.6	83
477	Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily Openable Small Heterocycles. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5588-5598	16.4	83
476	Time-Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIE-Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9470-9477	16.4	83
475	Aggregation-induced emission (AIE)-active polymers for explosive detection. <i>Polymer Chemistry</i> , 2019 , 10, 3822-3840	4.9	82
474	Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. <i>Nature Communications</i> , 2016 , 7, 11811	17.4	82
473	Copper-Catalyzed Polycoupling of Diynes, Primary Amines, and Aldehydes: A New One-Pot Multicomponent Polymerization Tool to Functional Polymers. <i>Macromolecules</i> , 2014 , 47, 4908-4919	5.5	82
472	Peptide-Induced AIEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up Probes. <i>Analytical Chemistry</i> , 2016 , 88, 3872-8	7.8	81
471	AIE-based theranostic systems for detection and killing of pathogens. <i>Theranostics</i> , 2019 , 9, 3223-3248	12.1	80
470	Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3959-3969	16.4	80
469	AIE-based cancer theranostics. <i>Coordination Chemistry Reviews</i> , 2020 , 402, 213076	23.2	8o
468	Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. <i>Nature Communications</i> , 2019 , 10, 2952	17.4	79
467	Molecular Engineering to Boost AIE-Active Free Radical Photogenerators and Enable High-Performance Photodynamic Therapy under Hypoxia. <i>Advanced Functional Materials</i> , 2020 , 30, 2002	2659	79

(2016-2020)

466	Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. <i>Chemical Science</i> , 2020 , 11, 2494-2503	9.4	78
465	Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. <i>Biomaterials</i> , 2019 , 218, 119330	15.6	78
464	A near-infrared AIEgen for specific imaging of lipid droplets. <i>Chemical Communications</i> , 2016 , 52, 5957-6	5 9 .8	78
463	Red/NIR-Emissive Benzo[d]imidazole-Cored AIEgens: Facile Molecular Design for Wavelength Extending and In Vivo Tumor Metabolic Imaging. <i>Advanced Materials</i> , 2018 , 30, e1805220	24	78
462	Aggregation-Induced Nonlinear Optical Effects of AIEgen Nanocrystals for Ultradeep In Vivo Bioimaging. <i>Advanced Materials</i> , 2019 , 31, e1904799	24	77
461	White-Light Emission of a Binary Light-Harvesting Platform Based on an Amphiphilic Organic Cage. <i>Chemistry of Materials</i> , 2018 , 30, 1285-1290	9.6	77
460	A multifunctional probe with aggregation-induced emission characteristics for selective fluorescence imaging and photodynamic killing of bacteria over mammalian cells. <i>Advanced Healthcare Materials</i> , 2015 , 4, 659-63	10.1	76
459	Efficient Red/Near-Infrared Fluorophores Based on Benzo[1,2-b:4,5-b?]dithiophene 1,1,5,5-Tetraoxide for Targeted Photodynamic Therapy and In Vivo Two-Photon Fluorescence Bioimaging. <i>Advanced Functional Materials</i> , 2018 , 28, 1706945	15.6	76
458	Multifunctional organic nanoparticles with aggregation-induced emission (AIE) characteristics for targeted photodynamic therapy and RNA interference therapy. <i>Chemical Communications</i> , 2016 , 52, 275	5 2 -8	76
457	Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15146-15156	16.4	76
456	Light-up probe based on AIEgens: dual signal turn-on for caspase cascade activation monitoring. <i>Chemical Science</i> , 2017 , 8, 2723-2728	9.4	75
455	Structural and theoretical insights into the AIE attributes of phosphindole oxide: the balance between rigidity and flexibility. <i>Chemistry - A European Journal</i> , 2015 , 21, 4440-9	4.8	75
454	Natural-Killer-Cell-Inspired Nanorobots with Aggregation-Induced Emission Characteristics for Near-Infrared-II Fluorescence-Guided Glioma Theranostics. <i>ACS Nano</i> , 2020 , 14, 11452-11462	16.7	75
453	Facile synthesis of AIEgens with wide color tunability for cellular imaging and therapy. <i>Chemical Science</i> , 2019 , 10, 3494-3501	9.4	74
452	Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration. <i>Chemical Science</i> , 2018 , 9, 2705-2710	9.4	74
451	Facile access to deep red/near-infrared emissive AlEgens for efficient non-doped OLEDs. <i>Chemical Science</i> , 2018 , 9, 6118-6125	9.4	74
450	Three-Pronged Attack by Homologous Far-red/NIR AIEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9610-9616	16.4	72
449	Kinetic trapping - a strategy for directing the self-assembly of unique functional nanostructures. <i>Chemical Communications</i> , 2016 , 52, 11870-84	5.8	7 ²

448	Graphene oxide as a novel nanoplatform for enhancement of aggregation-induced emission of silole fluorophores. <i>Advanced Materials</i> , 2012 , 24, 4191-5	24	72
447	A Bifunctional Aggregation-Induced Emission Luminogen for Monitoring and Killing of Multidrug-Resistant Bacteria. <i>Advanced Functional Materials</i> , 2018 , 28, 1804632	15.6	71
446	Targeted theranostic prodrugs based on an aggregation-induced emission (AIE) luminogen for real-time dual-drug tracking. <i>Chemical Communications</i> , 2014 , 50, 11465-8	5.8	70
445	Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. <i>Advanced Materials</i> , 2014 , 26, 1735-9	24	70
444	Mitochondrion-Specific Live-Cell Bioprobe Operated in a Fluorescence Turn-On Manner and a Well-Designed Photoactivatable Mechanism. <i>Advanced Materials</i> , 2015 , 27, 7093-100	24	69
443	Structural and process controls of AIEgens for NIR-II theranostics. <i>Chemical Science</i> , 2020 , 12, 3427-343	69.4	69
442	Dynamic Visualization of Stress/Strain Distribution and Fatigue Crack Propagation by an Organic Mechanoresponsive AIE Luminogen. <i>Advanced Materials</i> , 2018 , 30, e1803924	24	69
441	Aggregation-Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly Efficient Multimodal Theranostics. <i>Advanced Materials</i> , 2020 , 32, e2003382	24	68
440	Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. <i>Theranostics</i> , 2019 , 9, 246-264	12.1	68
439	A highly active and magnetically recoverable tris(triazolyl)-Cu(I) catalyst for alkyne-azide cycloaddition reactions. <i>Chemistry - A European Journal</i> , 2014 , 20, 4047-54	4.8	67
438	A sensitivity tuneable tetraphenylethene-based fluorescent probe for directly indicating the concentration of hydrogen sulfide. <i>Chemical Communications</i> , 2014 , 50, 8892-5	5.8	67
437	A dual functional AEE fluorogen as a mitochondrial-specific bioprobe and an effective photosensitizer for photodynamic therapy. <i>Chemical Communications</i> , 2014 , 50, 14451-4	5.8	66
436	New AIEgens with delayed fluorescence for fluorescence imaging and fluorescence lifetime imaging of living cells. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2554-2558	7.8	66
435	Facile one-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles through Sonogashira coupling/1,3-dipolar cycloaddition of acid chlorides, terminal acetylenes, and sodium azide. <i>Organic Letters</i> , 2009 , 11, 3024-7	6.2	66
434	Silole-Based Red Fluorescent Organic Dots for Bright Two-Photon Fluorescence In vitro Cell and In vivo Blood Vessel Imaging. <i>Small</i> , 2016 , 12, 782-92	11	66
433	Nanomaterials with Supramolecular Assembly Based on AIE Luminogens for Theranostic Applications. <i>Advanced Materials</i> , 2020 , 32, e2004208	24	65
432	A photostable AIEgen for nucleolus and mitochondria imaging with organelle-specific emission. Journal of Materials Chemistry B, 2016 , 4, 2614-2619	7.3	64
431	Self-assembly of ultralong polyion nanoladders facilitated by ionic recognition and molecular stiffness. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1942-7	16.4	64

430	Cellular and Mitochondrial Dual-Targeted Organic Dots with Aggregation-Induced Emission Characteristics for Image-Guided Photodynamic Therapy. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2667	-76 ^{10.1}	64
429	Rational Design of Perylenediimide-Substituted Triphenylethylene to Electron Transporting Aggregation-Induced Emission Luminogens (AIEgens) with High Mobility and Near-Infrared Emission. <i>Advanced Functional Materials</i> , 2018 , 28, 1705609	15.6	63
428	In situ visualizable self-assembly, aggregation-induced emission and circularly polarized luminescence of tetraphenylethene and alanine-based chiral polytriazole. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 4807-4816	7.1	63
427	Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. <i>CheM</i> , 2019 , 5, 2657-2677	16.2	62
426	Specific Light-Up Bioprobe with Aggregation-Induced Emission and Activatable Photoactivity for the Targeted and Image-Guided Photodynamic Ablation of Cancer Cells. <i>Angewandte Chemie</i> , 2015 , 127, 1800-1806	3.6	62
425	ACQ-to-AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two-Photon NIR Bioimaging. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 12822-12826	16.4	62
424	Facile Synthesis of Efficient Luminogens with AIE Features for Three-Photon Fluorescence Imaging of the Brain through the Intact Skull. <i>Advanced Materials</i> , 2020 , 32, e2000364	24	62
423	An Easily Available Ratiometric Reaction-Based AIE Probe for Carbon Monoxide Light-up Imaging. <i>Analytical Chemistry</i> , 2019 , 91, 9388-9392	7.8	62
422	The Clicked Pyridyl-Triazole Ligand: From Homogeneous to Robust, Recyclable Heterogeneous Mono- and Polymetallic Palladium Catalysts for Efficient SuzukiMiyaura, Sonogashira, and Heck Reactions. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 129-142	5.6	62
421	A red-emissive antibody-AIEgen conjugate for turn-on and wash-free imaging of specific cancer cells. <i>Chemical Science</i> , 2017 , 8, 7014-7024	9.4	62
420	Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11259-11268	16.4	61
419	Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional Aggregation-Induced Emission Luminogen. <i>ACS Nano</i> , 2018 , 12, 9549-9557	16.7	61
418	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4536-4540	16.4	60
417	Fluorogenic Ag -Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5750-5753	16.4	60
416	An Easily Accessible Ionic Aggregation-Induced Emission Luminogen with Hydrogen-Bonding-Switchable Emission and Wash-Free Imaging Ability. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5011-5015	16.4	59
415	Aptamer-Decorated Self-Assembled Aggregation-Induced Emission Organic Dots for Cancer Cell Targeting and Imaging. <i>Analytical Chemistry</i> , 2018 , 90, 1063-1067	7.8	59
414	Water-soluble tetraphenylethene derivatives as fluorescent "light-up" probes for nucleic acid detection and their applications in cell imaging. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 1806-12	4.5	59
413	Silole nanocrystals as novel biolabels. <i>Journal of Immunological Methods</i> , 2004 , 295, 111-8	2.5	59

412	Recent Advances in Alkyne-Based Multicomponent Polymerizations. <i>Macromolecular Chemistry and Physics</i> , 2016 , 217, 213-224	2.6	59
411	AIE-based luminescence probes for metal ion detection. <i>Coordination Chemistry Reviews</i> , 2021 , 429, 213	3 6 932	59
410	A Dual-Functional Photosensitizer for Ultraefficient Photodynamic Therapy and Synchronous Anticancer Efficacy Monitoring. <i>Advanced Functional Materials</i> , 2019 , 29, 1902673	15.6	58
409	Recent Progress in AIE-active Polymers. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2019 , 37, 289-301	3.5	58
408	Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. <i>Biomaterials</i> , 2020 , 230, 119582	15.6	58
407	Self-assembly of AIEgens. Coordination Chemistry Reviews, 2020, 406, 213142	23.2	58
406	AIE luminogens as fluorescent bioprobes. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 123, 115769	14.6	58
405	Recent advances of AIE light-up probes for photodynamic therapy. <i>Chemical Science</i> , 2021 , 12, 6488-650	06.4	58
404	Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. <i>Biomaterials</i> , 2019 , 208, 72-82	15.6	57
403	High-Contrast Visualization and Differentiation of Microphase Separation in Polymer Blends by Fluorescent AIE Probes. <i>Macromolecules</i> , 2017 , 50, 5807-5815	5.5	57
402	The Marriage of Aggregation-Induced Emission with Polymer Science. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1800568	4.8	57
401	AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles with Highly Enhanced Photodynamic Performance. <i>Advanced Science</i> , 2019 , 6, 1802050	13.6	56
400	A fluorescent probe with aggregation-induced emission characteristics for distinguishing homocysteine over cysteine and glutathione. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8397-8402	7.1	56
399	Aggregation-Induced Emission Probe for Study of the Bactericidal Mechanism of Antimicrobial Peptides. <i>ACS Applied Materials & Description</i> (2018), 10, 11436-11442	9.5	56
398	A simple mitochondrial targeting AIEgen for image-guided two-photon excited photodynamic therapy. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 2557-2565	7.3	55
397	Water-soluble bioprobes with aggregation-induced emission characteristics for light-up sensing of heparin. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4134-4141	7.3	55
396	A Highly Sensitive Bimodal Detection of Amine Vapours Based on Aggregation Induced Emission of 1,2-Dihydroquinoxaline Derivatives. <i>Chemistry - A European Journal</i> , 2017 , 23, 14911-14917	4.8	55
395	Covalent immobilization of aggregation-induced emission luminogens in silica nanoparticles through click reaction. <i>Small</i> , 2011 , 7, 1448-55	11	55

394	Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 20715-20724	9.5	54
393	Sensitive and reliable detection of glass transition of polymers by fluorescent probes based on AIE luminogens. <i>Polymer Chemistry</i> , 2015 , 6, 3537-3542	4.9	54
392	A self-assembly induced emission system constructed by the host-guest interaction of AIE-active building blocks. <i>Chemical Communications</i> , 2015 , 51, 1089-91	5.8	54
391	Efficient and magnetically recoverable "click" PEGylated Fe2O3-Pd nanoparticle catalysts for Suzuki-Miyaura, Sonogashira, and Heck reactions with positive dendritic effects. <i>Chemistry - A European Journal</i> , 2015 , 21, 1508-19	4.8	54
390	Computational evaluation of optoelectronic properties for organic/carbon materials. <i>Accounts of Chemical Research</i> , 2014 , 47, 3301-9	24.3	54
389	A recyclable ruthenium(II) complex supported on magnetic nanoparticles: a regioselective catalyst for alkyne-azide cycloaddition. <i>Chemical Communications</i> , 2013 , 49, 6956-8	5.8	54
388	Specific discrimination of gram-positive bacteria and direct visualization of its infection towards mammalian cells by a DPAN-based AIEgen. <i>Biomaterials</i> , 2018 , 187, 47-54	15.6	54
387	A highly efficient and AIE-active theranostic agent from natural herbs. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1454-1461	7.8	53
386	Tumor-Exocytosed Exosome/Aggregation-Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13836-13843	16.4	53
385	Killing G(+) or G(I)Bacteria? The Important Role of Molecular Charge in AIE-Active Photosensitizers. <i>Small Methods</i> , 2020 , 4, 2000046	12.8	53
384	A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. <i>Research</i> , 2018 , 2018, 3152870	7.8	53
383	Highly Emissive AIEgens with Multiple Functions: Facile Synthesis, Chromism, Specific Lipid Droplet Imaging, Apoptosis Monitoring, and In Vivo Imaging. <i>Chemistry of Materials</i> , 2018 , 30, 7892-7901	9.6	53
382	Thermoresponsive AIE polymers with fine-tuned response temperature. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 2964-2970	7.1	52
381	Economic Sulfur Conversion to Functional Polythioamides through Catalyst-Free Multicomponent Polymerizations of Sulfur, Acids, and Amines. <i>Journal of the American Chemical Society</i> , 2020 , 142, 978-9	o \$6 .4	52
380	Amphiphilic Tetraphenylethene-Based Pyridinium Salt for Selective Cell-Membrane Imaging and Room-Light-Induced Special Reactive Oxygen Species Generation. <i>ACS Applied Materials & Interfaces</i> , 2019 , 11, 10567-10577	9.5	51
379	Molecular Motion in the Solid State 2019 , 1, 425-431		50
378	Sparks fly when AIE meets with polymers. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 2207-2220	7.8	50
377	Molecular Design, Circularly Polarized Luminescence, and Helical Self-Assembly of Chiral Aggregation-Induced Emission Molecules. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 674-688	4.5	50

376	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-	9993	49
375	A Functioning Macroscopic "Rubik's Cube" Assembled via Controllable Dynamic Covalent Interactions. <i>Advanced Materials</i> , 2019 , 31, e1902365	24	49
374	Using the isotope effect to probe an aggregation induced emission mechanism: theoretical prediction and experimental validation. <i>Chemical Science</i> , 2016 , 7, 5573-5580	9.4	49
373	In situ monitoring of molecular aggregation using circular dichroism. <i>Nature Communications</i> , 2018 , 9, 4961	17.4	49
372	Multicomponent Tandem Reactions and Polymerizations of Alkynes, Carbonyl Chlorides, and Thiols. <i>Macromolecules</i> , 2015 , 48, 1941-1951	5.5	48
371	Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. <i>Biomaterials</i> , 2020 , 232, 119749	15.6	48
370	Fluorogenic Detection and Characterization of Proteins by Aggregation-Induced Emission Methods. <i>Chemistry - A European Journal</i> , 2019 , 25, 5824-5847	4.8	48
369	Visualization of Biogenic Amines and In Vivo Ratiometric Mapping of Intestinal pH by AIE-Active Polyheterocycles Synthesized by Metal-Free Multicomponent Polymerizations. <i>Advanced Functional Materials</i> , 2019 , 29, 1902240	15.6	47
368	Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. <i>ACS Nano</i> , 2019 , 13, 839-846	16.7	47
367	The unusual aggregation-induced emission of coplanar organoboron isomers and their lipid droplet-specific applications. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1498-1507	7.8	47
366	Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. <i>Biomaterials</i> , 2020 , 248, 120036	15.6	46
365	AIE-based super-resolution imaging probes for Emyloid plaques in mouse brains. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1554-1562	7.8	46
364	Exploration of High Efficiency AIE-Active Deep/Near-Infrared Red Emitters in OLEDs with High-Radiance. <i>Advanced Optical Materials</i> , 2020 , 8, 1901520	8.1	46
363	Substitution Activated Precise Phototheranostics through Supramolecular Assembly of AIEgen and Calixarene. <i>Journal of the American Chemical Society</i> , 2020 , 142, 15966-15974	16.4	46
362	Multicomponent Click Polymerization: A Facile Strategy toward Fused Heterocyclic Polymers. <i>Macromolecules</i> , 2016 , 49, 5475-5483	5.5	46
361	Red-emissive azabenzanthrone derivatives for photodynamic therapy irradiated with ultralow light power density and two-photon imaging. <i>Chemical Science</i> , 2018 , 9, 5165-5171	9.4	45
360	Design and Applications of an Efficient Amphiphilic ClickCul Catalyst in Water. <i>ACS Catalysis</i> , 2016 , 6, 5424-5431	13.1	45
359	A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. <i>Journal of Materials Chemistry B</i> 2018 6, 3894-3903	7.3	45

(2017-2020)

358	Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells. <i>Journal of the American Chemical Society</i> , 2020 , 142, 512-519	16.4	45
357	Stimuli-Responsive AIEgens. <i>Advanced Materials</i> , 2021 , 33, e2008071	24	45
356	AIE Featured Inorganic-Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and Real-Time Monitoring. <i>Nano Letters</i> , 2019 , 19, 2272-2279	11.5	44
355	Doping AIE Photothermal Molecule into All-Fiber Aerogel with Self-Pumping Water Function for Efficiency Solar Steam Generation. <i>ACS Applied Materials & Description of Materials & Des</i>	9.5	44
354	Click Synthesis, Aggregation-Induced Emission and Chirality, Circularly Polarized Luminescence, and Helical Self-Assembly of a Leucine-Containing Silole. <i>Small</i> , 2016 , 12, 6593-6601	11	44
353	Smart Probe for Tracing Cancer Therapy: Selective Cancer Cell Detection, Image-Guided Ablation, and Prediction of Therapeutic Response In Situ. <i>Small</i> , 2015 , 11, 4682-90	11	44
352	Quick and highly efficient copper-catalyzed cycloaddition of organic azides with terminal alkynes. <i>Organic and Biomolecular Chemistry</i> , 2012 , 10, 229-31	3.9	44
351	A Substitution-Dependent Light-Up Fluorescence Probe for Selectively Detecting Fe3+ Ions and Its Cell Imaging Application. <i>Advanced Functional Materials</i> , 2018 , 28, 1802833	15.6	43
350	Tuning Push-Pull Electronic Effects of AIEgens to Boost the Theranostic Efficacy for Colon Cancer. Journal of the American Chemical Society, 2020 , 142, 11442-11450	16.4	42
349	Red AIE-Active Fluorescent Probes with Tunable Organelle-Specific Targeting. <i>Advanced Functional Materials</i> , 2020 , 30, 1909268	15.6	42
348	Aggregation-induced emission probes for cancer theranostics. <i>Drug Discovery Today</i> , 2017 , 22, 1288-129	98. 8	42
347	Polymerization-induced emission. <i>Materials Horizons</i> , 2020 , 7, 987-998	14.4	42
346	Drawing a clear mechanistic picture for the aggregation-induced emission process. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1143-1150	7.8	41
345	Noncrystalline nickel phosphide decorated poly(vinyl alcohol-co-ethylene) nanofibrous membrane for catalytic hydrogenation of p-nitrophenol. <i>Applied Catalysis B: Environmental</i> , 2016 , 196, 223-231	21.8	41
344	A tetraphenylethene-based caged compound: synthesis, properties and applications. <i>Chemical Communications</i> , 2014 , 50, 8134-6	5.8	41
343	Improving Image-Guided Surgical and Immunological Tumor Treatment Efficacy by Photothermal and Photodynamic Therapies Based on a Multifunctional NIR AIEgen. <i>Advanced Materials</i> , 2021 , 33, e210	03458	41
342	Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications. Journal of Materials Chemistry B, 2017 , 5, 1650-1657	7.3	40
341	A Simple and Sensitive Method for an Important Physical Parameter: Reliable Measurement of Glass Transition Temperature by AIEgens. <i>Macromolecules</i> , 2017 , 50, 7620-7627	5.5	40

340	Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. <i>Chemical Communications</i> , 2015 , 51, 13416-9	5.8	40
339	Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 8040-8049	9.5	40
338	Rational design of red AIEgens with a new core structure from non-emissive heteroaromatics. <i>Chemical Science</i> , 2018 , 9, 7829-7834	9.4	40
337	A New Strategy toward BimpleIWater-Soluble AIE Probes for Hypoxia Detection. <i>Advanced Functional Materials</i> , 2019 , 29, 1903278	15.6	39
336	Tetraphenylpyrazine-based luminogens with full-colour emission. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1310-1316	7.8	39
335	Conjugated polyelectrolytes with aggregation-enhanced emission characteristics: synthesis and their biological applications. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 2436-45	4.5	39
334	AIEgens for microbial detection and antimicrobial therapy. <i>Biomaterials</i> , 2021 , 268, 120598	15.6	39
333	Ultrafast and Noninvasive Long-Term Bioimaging with Highly Stable Red Aggregation-Induced Emission Nanoparticles. <i>Analytical Chemistry</i> , 2019 , 91, 3467-3474	7.8	38
332	Construction of regio- and stereoregular poly(enaminone)s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines. <i>Polymer Chemistry</i> , 2015 , 6, 4436-4446	4.9	38
331	Molecular Motions in AIEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14608-14618	16.4	38
330	Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. <i>Advanced Materials</i> , 2021 , 33, e2100021	24	38
329	Boosting Non-Radiative Decay to Do Useful Work: Development of a Multi-Modality Theranostic System from an AIEgen. <i>Angewandte Chemie</i> , 2019 , 131, 5684-5688	3.6	37
328	Robust, Efficient, and Recyclable Catalysts from the Impregnation of Preformed Dendrimers Containing Palladium Nanoparticles on a Magnetic Support. <i>ChemCatChem</i> , 2015 , 7, 303-308	5.2	37
327	Multifunctional Supramolecular Assemblies with Aggregation-Induced Emission (AIE) for Cell Line Identification, Cell Contamination Evaluation, and Cancer Cell Discrimination. <i>ACS Nano</i> , 2020 , 14, 7552	- 1 563	37
326	Fabrication of Propeller-Shaped Supra-amphiphile for Construction of Enzyme-Responsive Fluorescent Vesicles. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 27987-27995	9.5	37
325	Materials interaction in aggregation-induced emission (AIE)-based fluorescent resin for smart coatings. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12849-12857	7.1	37
324	Functional Built-In Template Directed Siliceous Fluorescent Supramolecular Vesicles as Diagnostics. <i>ACS Applied Materials & ACS Applied Materials & Diagnostics</i> .	9.5	36
323	Multifunctional Poly(N-sulfonylamidine)s Constructed by Cu-Catalyzed Three-Component Polycouplings of Diynes, Disulfonyl Azide, and Amino Esters. <i>Macromolecules</i> , 2015 , 48, 3180-3189	5.5	36

(2015-2016)

322	Poly(triphenyl ethene) and poly(tetraphenyl ethene): synthesis, aggregation-induced emission property and application as paper sensors for effective nitro-compounds detection. <i>Polymer Chemistry</i> , 2016 , 7, 6309-6317	4.9	36
321	Zwitterionic AlEgens: Rational Molecular Design for NIR-II Fluorescence Imaging-Guided Synergistic Phototherapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2007026	15.6	36
320	Mechanistic connotations of restriction of intramolecular motions (RIM). <i>National Science Review</i> , 2021 , 8, nwaa260	10.8	36
319	Recent advances in cation sensing using aggregation-induced emission. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 659-708	7.8	36
318	Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. <i>Science China Chemistry</i> , 2018 , 61, 76-87	7.9	36
317	Three-Component Regio- and Stereoselective Polymerizations toward Functional Chalcogen-Rich Polymers with AIE-Activities. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14712-14719	16.4	35
316	Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). <i>ACS Applied Materials & ACS Applied Materials</i>	9.5	35
315	Cascade Polyannulation of Diyne and Benzoylacetonitrile: A New Strategy for Synthesizing Functional Substituted Poly(naphthopyran)s. <i>Macromolecules</i> , 2015 , 48, 4241-4249	5.5	35
314	Remarkable Multichannel Conductance of Novel Single-Molecule Wires Built on Through-Space Conjugated Hexaphenylbenzene. <i>Nano Letters</i> , 2018 , 18, 4200-4205	11.5	35
313	Room Temperature Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and Iminophosphorane toward Heteroatom-Rich Multifunctional Poly(phosphorus amidine)s. <i>Macromolecules</i> , 2017 , 50, 6043-6053	5.5	35
312	Structure-tuned and thermodynamically controlled mechanochromic self-recovery of AIE-active Au(I) complexes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 894-899	7.1	35
311	Living Luminogens: light driven ACQ-to-AIE transformation accompanied with solid-state actuation. <i>Materials Horizons</i> , 2020 , 7, 1566-1572	14.4	34
310	Direct Polymerization of Carbon Dioxide, Diynes, and Alkyl Dihalides under Mild Reaction Conditions. <i>Macromolecules</i> , 2018 , 51, 42-48	5.5	34
309	Iron(III)-catalyzed synthesis of multi-substituted imidazoles via [3+2] cycloaddition reaction of nitroolefins and N-aryl benzamidines. <i>Tetrahedron</i> , 2013 , 69, 9417-9421	2.4	34
308	A Facile Strategy To Prepare Smart Coatings with Autonomous Self-Healing and Self-Reporting Functions. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 4870-4877	9.5	34
307	Multicomponent Polymerizations of Alkynes, Sulfonyl Azides, and 2-Hydroxybenzonitrile/2-Aminobenzonitrile toward Multifunctional Iminocoumarin/Quinoline-Containing Poly(N-sulfonylimine)s. <i>ACS Macro Letters</i> , 2019 , 8, 101-106	6.6	34
306	A highly fluorescent AIE-active theranostic agent with anti-tumor activity to specific cancer cells. <i>Nanoscale</i> , 2016 , 8, 12520-3	7.7	33
305	Synthesis of 1,5-regioregular polytriazoles by efficient NMe4OH-mediated azidellkyne click polymerization. <i>Polymer Chemistry</i> , 2015 , 6, 5545-5549	4.9	33

304	Sodium hydroxide-catalyzed transfer hydrogenation of carbonyl compounds and nitroarenes using ethanol or isopropanol as both solvent and hydrogen donor. <i>Journal of Molecular Catalysis A</i> , 2015 , 400, 14-21		33	
303	Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer. <i>ACS Nano</i> , 2020 , 14, 14228-14239	16.7	33	
302	Aggregation-Induced Emission Probe for Specific Turn-On Quantification of Soluble Transferrin Receptor: An Important Disease Marker for Iron Deficiency Anemia and Kidney Diseases. <i>Analytical Chemistry</i> , 2018 , 90, 1154-1160	7.8	33	
301	Facile emission color tuning and circularly polarized light generation of single luminogen in engineering robust forms. <i>Materials Horizons</i> , 2019 , 6, 405-411	14.4	32	
300	Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of Aggregation-Induced Emission and Host@uest Assembly. <i>Chemistry of Materials</i> , 2019 , 31, 1092-1100	9.6	32	
299	Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. <i>Biomaterials</i> , 2020 , 238, 119834	15.6	32	
298	Anionic conjugated polytriazole: direct preparation, aggregation-enhanced emission, and highly efficient Al3+ sensing. <i>Polymer Chemistry</i> , 2016 , 7, 5835-5839	4.9	32	
297	Manipulating Solid-State Intramolecular Motion toward Controlled Fluorescence Patterns. <i>ACS Nano</i> , 2020 , 14, 2090-2098	16.7	32	
296	A supramolecular fluorescent vesicle based on a coordinating aggregation induced emission amphiphile: insight into the role of electrical charge in cancer cell division. <i>Chemical Communications</i> , 2016 , 52, 12466-12469	5.8	31	
295	Manipulation of Molecular Aggregation States to Realize Polymorphism, AIE, MCL, and TADF in a Single Molecule. <i>Angewandte Chemie</i> , 2018 , 130, 12653-12657	3.6	31	
294	Tuning the electronic nature of aggregation-induced emission chromophores with enhanced electron-transporting properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 5184		31	
293	SwissKnife-Inspired Multifunctional Fluorescence Probes for Cellular Organelle Targeting Based on Simple AIEgens. <i>Analytical Chemistry</i> , 2019 , 91, 2169-2176	7.8	31	
292	One stone, three birds: one AlEgen with three colors for fast differentiation of three pathogens. <i>Chemical Science</i> , 2020 , 11, 4730-4740	9.4	31	
291	Aggregation-induced emission (AIE) dye loaded polymer nanoparticles for gene silencing in pancreatic cancer and their in vitro and in vivo biocompatibility evaluation. <i>Nano Research</i> , 2015 , 8, 156.	3 ¹ 1576	30	
2 90	Bright red aggregation-induced emission nanoparticles for multifunctional applications in cancer therapy. <i>Chemical Science</i> , 2020 , 11, 2369-2374	9.4	30	
289	Fluorescence Turn-On Visualization of Microscopic Processes for Self-Healing Gels by AIEgens and Anticounterfeiting Application. <i>Chemistry of Materials</i> , 2019 , 31, 5683-5690	9.6	30	
288	Making the Best Use of Excited-State Energy: Multimodality Theranostic Systems Based on Second Near-Infrared (NIR-II) Aggregation-Induced Emission Luminogens (AIEgens) 2020 , 2, 1033-1040		30	
287	AIE Bioconjugates for Biomedical Applications. <i>Advanced Optical Materials</i> , 2020 , 8, 2000162	8.1	29	

(2015-2016)

286	Polyarylcyanation of Diyne: A One-Pot Three-Component Convenient Route for In Situ Generation of Polymers with AIE Characteristics. <i>Macromolecules</i> , 2016 , 49, 8888-8898	5.5	29
285	Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. <i>ACS Nano</i> , 2020 , 14, 4265-4275	16.7	28
284	Polymorph selectivity of an AIE luminogen under nano-confinement to visualize polymer microstructures. <i>Chemical Science</i> , 2019 , 11, 997-1005	9.4	28
283	Bright Aggregation-Induced Emission Nanoparticles for Two-Photon Imaging and Localized Compound Therapy of Cancers. <i>ACS Nano</i> , 2020 ,	16.7	28
282	Water-Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIR-II Photothermal Anti-Bacterial Therapy. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11758-11762	<u>1</u> 6.4	28
281	Strategies to Enhance the Photosensitization: Polymerization and the DonorAcceptor EvenDdd Effect. <i>Angewandte Chemie</i> , 2018 , 130, 15409-15413	3.6	28
280	Photostable AIE fluorogens for accurate and sensitive detection of S-phase DNA synthesis and cell proliferation. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4993-4996	7.3	27
279	Highly stable and bright AIE dots for NIR-II deciphering of living rats. Nano Today, 2020, 34, 100893	17.9	27
278	Efficient red AIEgens based on tetraphenylethene: synthesis, structure, photoluminescence and electroluminescence. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 5900-5907	7.1	27
277	Fluorogens with Aggregation Induced Emission: Ideal Photoacoustic Contrast Reagents Due to Intramolecular Rotation. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 1864-8	1.3	27
276	Reverse Thinking of the Aggregation-Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers*. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 203	76: <u>4</u> 0	3 7 7
275	AIEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: Aflatoxin B and cyclopiazonic acid as an example. <i>Biosensors and Bioelectronics</i> , 2021 , 182, 113188	11.8	27
274	A Biomimetic Aggregation-Induced Emission Photosensitizer with Antigen-Presenting and Hitchhiking Function for Lipid Droplet Targeted Photodynamic Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2102322	24	27
273	Catalysis Inside Dendrimers. <i>Synthesis</i> , 2015 , 47, 2017-2031	2.9	26
272	Cancer cell discrimination and dynamic viability monitoring through wash-free bioimaging using AIEgens. <i>Chemical Science</i> , 2020 , 11, 7676-7684	9.4	26
271	AIEgens in cell-based multiplex fluorescence imaging. Science China Chemistry, 2019, 62, 1312-1332	7.9	26
270	Iron(III)-Catalyzed Synthesis of 1,2,4-Trisubstituted Imidazoles through the Reactions of Amidines and Aldehydes in Air. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2798-2802	5.6	26
269	Multicomponent Polycoupling of Internal Diynes, Aryl Diiodides, and Boronic Acids to Functional Poly(tetraarylethene)s. <i>Macromolecules</i> , 2015 , 48, 8098-8107	5.5	26

268	Photomechanical Luminescence from Through-Space Conjugated AlEgens. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8828-8832	16.4	26
267	Direct Visualization of Chiral Amplification of Chiral Aggregation Induced Emission Molecules in Nematic Liquid Crystals. <i>ACS Nano</i> , 2021 , 15, 4956-4966	16.7	26
266	Aggregate Science: Much to Explore in the Meso World. <i>Matter</i> , 2021 , 4, 338-349	12.7	26
265	Lysosome-Targeting Red-Emitting Aggregation-Induced Emission Probe with Large Stokes Shift for Light-Up Visualization of & Acetylhexosaminidase. <i>Analytical Chemistry</i> , 2019 , 91, 12611-12614	7.8	25
264	Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. <i>ACS Nano</i> , 2019 , 13, 11863-11873	16.7	25
263	Specific Targeting, Imaging, and Ablation of Tumor-Associated Macrophages by Theranostic Mannose-AIEgen Conjugates. <i>Analytical Chemistry</i> , 2019 , 91, 6836-6843	7.8	25
262	An Easily Accessible Ionic Aggregation-Induced Emission Luminogen with Hydrogen-Bonding-Switchable Emission and Wash-Free Imaging Ability. <i>Angewandte Chemie</i> , 2018 , 130, 5105-5109	3.6	25
261	Multiplexed imaging detection of live cell intracellular changes in early apoptosis with aggregation-induced emission fluorogens. <i>Science China Chemistry</i> , 2018 , 61, 892-897	7.9	25
260	Fluorescence Self-Reporting Precipitation Polymerization Based on Aggregation-Induced Emission for Constructing Optical Nanoagents. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10122-1012	8 ^{16.4}	25
259	Modular Peptide Probe for Pre/Intra/Postoperative Therapeutic to Reduce Recurrence in Ovarian Cancer. <i>ACS Nano</i> , 2020 , 14, 14698-14714	16.7	25
258	Pillar[5]arene-Modified Gold Nanorods as Nanocarriers for Multi-Modal Imaging-Guided Synergistic Photodynamic-Photothermal Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2009924	15.6	25
257	The fast-growing field of photo-driven theranostics based on aggregation-induced emission <i>Chemical Society Reviews</i> , 2022 ,	58.5	25
256	Direct Construction of Acid-Responsive Poly(indolone)s through Multicomponent Tandem Polymerizations. <i>ACS Macro Letters</i> , 2019 , 569-575	6.6	24
255	Monodisperse AIE-Active Conjugated Polymer Nanoparticles via Dispersion Polymerization Using Geminal Cross-Coupling of 1,1-Dibromoolefins. <i>Small</i> , 2016 , 12, 6547-6552	11	24
254	Multifunctional Linear and Hyperbranched Five-Membered Cyclic Carbonate-Based Polymers Directly Generated from CO2 and Alkyne-Based Three-Component Polymerization. <i>Macromolecules</i> , 2019 , 52, 5546-5554	5.5	24
253	Magnetically recoverable ruthenium catalysts in organic synthesis. <i>Molecules</i> , 2014 , 19, 4635-53	4.8	24
252	A Feasible Strategy of Fabricating Type I Photosensitizer for Photodynamic Therapy in Cancer Cells and Pathogens. <i>ACS Nano</i> , 2021 , 15, 7735-7743	16.7	24
251	Precise Molecular Engineering of Small Organic Phototheranostic Agents toward Multimodal Imaging-Guided Synergistic Therapy. <i>ACS Nano</i> , 2021 , 15, 7328-7339	16.7	24

(2021-2019)

250	Photoresponsive spiro-polymers generated in situ by C-H-activated polyspiroannulation. <i>Nature Communications</i> , 2019 , 10, 5483	17.4	24	
249	Aggregation-Induced Emission: A Rising Star in Chemistry and Materials Science. <i>Chinese Journal of Chemistry</i> , 2021 , 39, 677-689	4.9	24	
248	Synthesis and Design of Aggregation-Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets. <i>Angewandte Chemie</i> , 2015 , 127, 15375-15379	3.6	23	
247	Stimulus responsive fluorescent hyperbranched polymers and their applications. <i>Science China Chemistry</i> , 2010 , 53, 2409-2428	7.9	23	
246	Multicomponent polymerization: development of a one-pot synthetic route to functional polymers using diyne, N-sulfonyl azide and water/ethanol as reactants. <i>Polymer Chemistry</i> , 2016 , 7, 5646-5654	4.9	23	
245	Circularly Polarized Luminescence from Chiral Conjugated Poly(carbazole-ran-acridine)s with Aggregation-Induced Emission and Delayed Fluorescence. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 221-2	21 93	23	
244	Mechanochromic Fluorescent Polymers Enabled by AIE Processes. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000311	4.8	23	
243	Identification and Single-Cell Analysis of Viable Circulating Tumor Cells by a Mitochondrion-Specific AIE Bioprobe. <i>Advanced Science</i> , 2020 , 7, 1902760	13.6	22	
242	Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. <i>Macromolecules</i> , 2019 , 52, 8814-8825	5.5	22	
241	One-pot synthesis of 4,5-disubstituted 1,2,3-(NH)-triazoles using terminal acetylenes, carbon monoxide, aryl iodides, and sodium azide. <i>Tetrahedron Letters</i> , 2011 , 52, 980-982	2	22	
240	Good Steel Used in the Blade: Well-Tailored Type-I Photosensitizers with Aggregation-Induced Emission Characteristics for Precise Nuclear Targeting Photodynamic Therapy. <i>Advanced Science</i> , 2021 , 8, e2100524	13.6	22	
239	Facile Polymerization of Water and Triple-Bond Based Monomers toward Functional Polyamides. <i>Macromolecules</i> , 2017 , 50, 8554-8561	5.5	21	
238	Enlightening Freezellhaw Process of Physically Cross-Linked Poly(vinyl alcohol) Hydrogels by Aggregation-Induced Emission Fluorogens. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 1390-1398	4.3	21	
237	Charge control of fluorescent probes to selectively target the cell membrane or mitochondria: theoretical prediction and experimental validation. <i>Materials Horizons</i> , 2019 , 6, 2016-2023	14.4	21	
236	Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 6814-6826	9.5	21	
235	Tailoring Noncovalent Interactions to Activate Persistent Room-Temperature Phosphorescence from Doped Polyacrylonitrile Films. <i>Advanced Functional Materials</i> , 2021 , 31, 2101656	15.6	21	
234	Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15724-15742	16.4	21	
233	NIR-II AIEgens: A WinWin Integration towards Bioapplications. <i>Angewandte Chemie</i> , 2021 , 133, 7552-756	5 3 .6	21	

232	Clusteroluminescence from Cluster Excitons in Small Heterocyclics Free of Aromatic Rings. <i>Advanced Science</i> , 2021 , 8, 2004299	13.6	21
231	Sticky nanopads made of crystallizable fluorescent polymers for rapid and sensitive detection of organic pollutants in water. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2115-2122	13	20
230	Design and Synthesis of Luminescent Liquid Crystalline Polymers with Dacketing Effect and Luminescent Patterning Applications. <i>Macromolecules</i> , 2019 , 52, 3668-3679	5.5	20
229	Targeted Theranostics for Tuberculosis: A Rifampicin-Loaded Aggregation-Induced Emission Carrier for Granulomas Tracking and Anti-Infection. <i>ACS Nano</i> , 2020 , 14, 8046-8058	16.7	20
228	Stereotactic Photodynamic Therapy Using a Two-Photon AIE Photosensitizer. <i>Small</i> , 2019 , 15, e190508	011	20
227	GreenBynthesis of 1,4-disubstituted 5-iodo-1,2,3-triazoles under neat conditions, and an efficient approach of construction of 1,4,5-trisubstituted 1,2,3-triazoles in one pot. <i>Tetrahedron Letters</i> , 2014 , 55, 7026-7028	2	20
226	Donor/Ebridge Manipulation for Constructing a Stable NIR-II Aggregation-Induced Emission Luminogen with Balanced Phototheranostic Performance*. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26769-26776	16.4	20
225	Controllable and Diversiform Topological Morphologies of Self-Assembling Supra-Amphiphiles with Aggregation-Induced Emission Characteristics for Mimicking Light-Harvesting Antenna. <i>Advanced Science</i> , 2020 , 7, 2001909	13.6	20
224	Photoresponsive Polymers with Aggregation-Induced Emission. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 2290-2309	4.3	20
223	Multifunctional Au -based AIEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 7097-7105	16.4	20
222	Palladium-catalyzed alkyne polyannulation of diphenols and unactivated internal diynes: a new synthetic route to functional heterocyclic polymers. <i>Polymer Chemistry</i> , 2016 , 7, 330-338	4.9	19
221	Centimeter-Deep NIR-II Fluorescence Imaging with Nontoxic AIE Probes in Nonhuman Primates. <i>Research</i> , 2020 , 2020, 4074593	7.8	19
220	Multifaceted functionalities constructed from pyrazine-based AIEgen system. <i>Coordination Chemistry Reviews</i> , 2020 , 422, 213472	23.2	19
219	AlEgen-Based Polymer Nanocomposites for Imaging-Guided Photothermal Therapy. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 4306-4318	4.3	19
218	Efficient Killing of Multidrug-Resistant Internalized Bacteria by AIEgens In Vivo. <i>Advanced Science</i> , 2021 , 8, 2001750	13.6	19
217	Single injection and multiple treatments: An injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. <i>Nano Today</i> , 2021 , 37, 101091	17.9	19
216	Bright Bacterium for Hypoxia-Tolerant Photodynamic Therapy Against Orthotopic Colon Tumors by an Interventional Method. <i>Advanced Science</i> , 2021 , 8, e2004769	13.6	19
215	A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14147-14157	16.4	19

(2020-2021)

214	Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer Construction. <i>Molecules</i> , 2021 , 26,	4.8	19
213	Ratiometric Detection of Mitochondrial Thiol with a Two-Photon Active AIEgen <i>ACS Applied Bio Materials</i> , 2019 , 2, 3120-3127	4.1	18
212	A tris(triazolate) ligand for a highly active and magnetically recoverable palladium catalyst of selective alcohol oxidation using air at atmospheric pressure. <i>Chemistry - A European Journal</i> , 2015 , 21, 6501-10	4.8	18
211	Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. <i>Chemical Science</i> , 2020 , 11, 8438-8447	9.4	18
21 0	Molecular Engineering of High-Performance Aggregation-Induced Emission Photosensitizers to Boost Cancer Theranostics Mediated by Acid-Triggered Nucleus-Targeted Nanovectors. <i>ACS Nano</i> , 2021 , 15, 10689-10699	16.7	18
209	New Phenothiazine Derivatives That Exhibit Photoinduced Room-Temperature Phosphorescence. <i>Advanced Functional Materials</i> , 2021 , 31, 2101719	15.6	18
208	Functional isocoumarin-containing polymers synthesized by rhodium-catalyzed oxidative polycoupling of aryl diacid and internal diyne. <i>Polymer Chemistry</i> , 2016 , 7, 2501-2510	4.9	17
207	Caking-Inspired Cold Sintering of Plastic Supramolecular Films as Multifunctional Platforms. <i>Advanced Functional Materials</i> , 2018 , 28, 1803370	15.6	17
206	A ratiometric fluorescent probe based on AIEgen for detecting HClO in living cells. <i>Chemical Communications</i> , 2020 , 56, 14613-14616	5.8	17
205	Codes in Code: AIE Supramolecular Adhesive Hydrogels Store Huge Amounts of Information. <i>Advanced Materials</i> , 2021 , 33, e2105418	24	17
204	Tailoring the Molecular Properties with Isomerism Effect of AIEgens. <i>Advanced Functional Materials</i> , 2019 , 29, 1903834	15.6	16
203	Highly efficient phototheranostics of macrophage-engulfed Gram-positive bacteria using a NIR luminogen with aggregation-induced emission characteristics. <i>Biomaterials</i> , 2020 , 261, 120340	15.6	16
202	Upregulating Aggregation-Induced-Emission Nanoparticles with Blood-Tumor-Barrier Permeability for Precise Photothermal Eradication of Brain Tumors and Induction of Local Immune Responses. <i>Advanced Materials</i> , 2021 , 33, e2008802	24	16
201	Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infrared-II Fluorescence Imaging and Near Infrared-I Photothermal Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2102213	15.6	16
200	How to Manipulate Through-Space Conjugation and Clusteroluminescence of Simple AlEgens with Isolated Phenyl Rings. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9565-9574	16.4	16
199	Polyannulation of internal alkynes and O-acyloxime derivatives to synthesize functional poly(isoquinoline)s. <i>Polymer Chemistry</i> , 2016 , 7, 5436-5444	4.9	16
198	AIE-Based Theranostic Probe for Sequential Imaging and Killing of Bacteria and Cancer Cells. <i>Advanced Optical Materials</i> , 2020 , 8, 1902191	8.1	16
197	Multicationic AIEgens for unimolecular photodynamic theranostics and two-photon fluorescence bioimaging. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1623-1633	7.8	16

196	AIEgen-loaded nanofibrous membrane as photodynamic/photothermal antimicrobial surface for sunlight-triggered bioprotection. <i>Biomaterials</i> , 2021 , 276, 121007	15.6	16
195	Click Metallodendrimers and Their Functions. <i>Synlett</i> , 2015 , 26, 1437-1449	2.2	15
194	Achievement of High-Performance Nondoped Blue OLEDs Based on AlEgens via Construction of Effective High-Lying Charge-Transfer State. <i>Advanced Optical Materials</i> , 2020 , 8, 1902195	8.1	15
193	Iron(III)-Catalyzed Direct N-Alkylation of Azoles via Oxidative Transformation of sp3 C?H Bonds under Solvent-Free Conditions. <i>Chinese Journal of Chemistry</i> , 2012 , 30, 2285-2291	4.9	15
192	Brain-Targeted Aggregation-Induced-Emission Nanoparticles with Near-Infrared Imaging at 1550[hm Boosts Orthotopic Glioblastoma Theranostics. <i>Advanced Materials</i> , 2021 , e2106082	24	15
191	Aggregation-Induced Emission and Photocyclization of Poly(hexaphenyl-1,3-butadiene)s Synthesized from II + 2IPolycoupling of Internal Alkynes and Arylboronic Acids. <i>Macromolecules</i> , 2016 , 49, 5817-5830	5.5	15
190	Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. <i>National Science Review</i> , 2021 , 8, nwaa135	10.8	15
189	Assembly of 1-isoindole derivatives by selective carbon-nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. <i>Chemical Science</i> , 2019 , 10, 7076-	7 0 81	14
188	Redox-responsive fluorescent AIE bioconjugate with aggregation enhanced retention features for targeted imaging reinforcement and selective suppression of cancer cells. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1335-1340	7.8	14
187	Site-Selective, Multistep Functionalizations of CO-Based Hyperbranched Poly(alkynoate)s toward Functional Polymetric Materials. <i>Advanced Science</i> , 2020 , 7, 2000465	13.6	14
186	Room temperature multicomponent polymerizations of alkynes, sulfonyl azides, and N-protected isatins toward oxindole-containing poly(N-acylsulfonamide)s. <i>Polymer Chemistry</i> , 2018 , 9, 1674-1683	4.9	14
185	Synthesis of Functional Poly(propargyl imine)s by Multicomponent Polymerizations of Bromoarenes, Isonitriles, and Alkynes. <i>ACS Macro Letters</i> , 2017 , 6, 1352-1356	6.6	14
184	Structural Modification Orientated Multifunctional AIE Fluorescence Probes: Organelles Imaging and Effective Photosensitizer for Photodynamic Therapy. <i>Advanced Optical Materials</i> , 2020 , 8, 1901433	8.1	14
183	Exosome-Mimetic Supramolecular Vesicles with Reversible and Controllable Fusion and Fission*. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 21510-21514	16.4	14
182	Inorganic Drganic Nanocomposites Based on Aggregation-Induced Emission Luminogens. <i>Advanced Functional Materials</i> , 2021 , 31, 2006952	15.6	14
181	Triple-Jump Photodynamic Theranostics: MnO Combined Upconversion Nanoplatforms Involving a Type-I Photosensitizer with Aggregation-Induced Emission Characteristics for Potent Cancer Treatment. <i>Advanced Materials</i> , 2021 , 33, e2103748	24	14
180	Tuning aggregation-induced emission nanoparticle properties under thin film formation. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 537-545	7.8	13
179	Functional Scaffolds from AIE Building Blocks. <i>Matter</i> , 2020 , 3, 1862-1892	12.7	13

178	Type I AIE photosensitizers: Mechanism and application. View, 20200121	7.8	13
177	Recent Developments in the Synthesis of Nitrogen-Containing Heterocycles through CH/NH Bond Functionalizations and Oxidative Cyclization. <i>Synlett</i> , 2019 , 30, 1026-1036	2.2	12
176	pH-Responsive Au(i)-disulfide nanoparticles with tunable aggregation-induced emission for monitoring intragastric acidity. <i>Chemical Science</i> , 2020 , 11, 6472-6478	9.4	12
175	A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy. <i>Advanced Materials</i> , 2021 , 33, e2105999	24	12
174	Making Aggregation-Induced Emission Luminogen More Valuable by Gold: Enhancing Anticancer Efficacy by Suppressing Thioredoxin Reductase Activity. <i>ACS Nano</i> , 2021 , 15, 9176-9185	16.7	12
173	Side Area-Assisted 3D Evaporator with Antibiofouling Function for Ultra-Efficient Solar Steam Generation. <i>Advanced Materials</i> , 2021 , 33, e2102258	24	12
172	Fabrics Attached with Highly Efficient Aggregation-Induced Emission Photosensitizer: Toward Self-Antiviral Personal Protective Equipment. <i>ACS Nano</i> , 2021 ,	16.7	12
171	Side-Chain Engineering of Aggregation-Induced Emission Molecules for Boosting Cancer Phototheranostics. <i>Advanced Functional Materials</i> ,2107545	15.6	12
170	Microlasers from AIE-Active BODIPY Derivative. Small, 2020, 16, e1907074	11	12
169	A flexible topo-optical sensing technology with ultra-high contrast. <i>Nature Communications</i> , 2020 , 11, 1448	17.4	11
168	Suzuki-Miyaura Coupling Enabled by Aryl to Vinyl 1,4-Palladium Migration. <i>IScience</i> , 2020 , 23, 100966	6.1	11
167	Three-Pronged Attack by Homologous Far-red/NIR AIEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. <i>Angewandte Chemie</i> , 2020 , 132, 9697-9703	3.6	11
166	One-step, rapid fluorescence sensing of fungal viability based on a bioprobe with aggregation-induced emission characteristics. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 957-964	7.8	11
165	Multicomponent Tandem Polymerization of Aromatic Alkynes, Carbonyl Chloride, and Fischer's Base toward Poly(diene merocyanine)s. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 1264-1270	4.9	11
164	Development of AIEgenthontmorillonite nanocomposite powders for computer-assisted visualization of latent fingermarks. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 2131-2136	7.8	11
163	Photoactivatable dihydroalkaloids for cancer cell imaging and chemotherapy with high spatiotemporal resolution. <i>Materials Horizons</i> , 2020 , 7, 2696-2701	14.4	11
162	More is less: Creation of pathogenic microbe-related theranostic oriented AIEgens. <i>Biomaterials</i> , 2021 , 271, 120725	15.6	11
161	Bio-orthogonal AIE Dots Based on Polyyne-Bridged Red-emissive AIEgen for Tumor Metabolic Labeling and Targeted Imaging. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 770-774	4.5	11

160	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. <i>Angewandte Chemie</i> , 2019 , 131, 4584-4588	3.6	10
159	Tumor-Exocytosed Exosome/Aggregation-Induced Emission Luminogen Hybrid Nanovesicles Facilitate Efficient Tumor Penetration and Photodynamic Therapy. <i>Angewandte Chemie</i> , 2020 , 132, 139	4ð-139	94 ⁷ 0
158	AlEgens: An emerging fluorescent sensing tool to aid food safety and quality control. <i>Comprehensive Reviews in Food Science and Food Safety</i> , 2020 , 19, 2297-2329	16.4	10
157	High-Performance Near-Infrared Aggregation-Induced Emission Luminogen with Mitophagy Regulating Capability for Multimodal Cancer Theranostics. <i>ACS Nano</i> , 2021 ,	16.7	10
156	Cost-effective resource utilization for waste biomass: A simple preparation method of photo-thermal biochar cakes (BCs) toward dye wastewater treatment with solar energy. <i>Environmental Research</i> , 2021 , 194, 110720	7.9	10
155	Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. Journal of the American Chemical Society, 2021 , 143, 9468-9477	16.4	10
154	One-Step Multicomponent Polymerizations for the Synthesis of Multifunctional AIE Polymers. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2000471	4.8	10
153	Wash-free detection and bioimaging by AIEgens. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 723-743	7.8	10
152	A near-infrared AIE probe for super-resolution imaging and nuclear lipid droplet dynamic study. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3043-3049	7.8	10
151	Fluorescent polymer cubosomes and hexosomes with aggregation-induced emission. <i>Chemical Science</i> , 2021 , 12, 5495-5504	9.4	10
150	Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. <i>Topics in Current Chemistry</i> , 2021 , 379, 7	7.2	10
149	Acceptor Planarization and Donor Rotation: A Facile Strategy for Realizing Synergistic Cancer Phototherapy Type I PDT and PTT <i>ACS Nano</i> , 2022 ,	16.7	10
148	Recyclable Cu nanoparticle catalyzed azide-alkyne click polymerization. <i>Science China Chemistry</i> , 2019 , 62, 1017-1022	7.9	9
147	Base-catalyzed hydrogendeuterium exchange and dehalogenation reactions of 1,2,3-triazole derivatives. <i>Tetrahedron</i> , 2016 , 72, 6375-6379	2.4	9
146	Seeing the unseen: AIE luminogens for super-resolution imaging. <i>Coordination Chemistry Reviews</i> , 2022 , 451, 214279	23.2	9
145	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19222-19231	16.4	9
144	One-for-all phototheranostics: Single component AIE dots as multi-modality theranostic agent for fluorescence-photoacoustic imaging-guided synergistic cancer therapy. <i>Biomaterials</i> , 2021 , 274, 120892	15.6	9
143	Dynamic Visible Monitoring of Heterogeneous Local Strain Response through an Organic Mechanoresponsive AIE Luminogen. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 22129-22136	9.5	9

142	Diagnosis of fatty liver disease by a multiphoton-active and lipid-droplet-specific AIEgen with nonaromatic rotors. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1853-1862	7.8	9
141	Hydrogen peroxide-responsive AIE probe for imaging-guided organelle targeting and photodynamic cancer cell ablation. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3489-3496	7.8	9
140	Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. <i>Biomaterials</i> , 2021 , 275, 120934	15.6	9
139	Aggregation-induced emission luminogen for in vivo three-photon fluorescence lifetime microscopic imaging. <i>Journal of Innovative Optical Health Sciences</i> , 2019 , 12, 1940005	1.2	8
138	Palladium-catalyzed polyannulation of pyrazoles and diynes toward multifunctional poly(indazole)s under monomer non-stoichiometric conditions. <i>Polymer Chemistry</i> , 2019 , 10, 5296-5303	4.9	8
137	Functional Polyselenoureas for Selective Gold Recovery Prepared from Catalyst-Free Multicomponent Polymerizations of Elemental Selenium. <i>CCS Chemistry</i> , 2020 , 2, 191-202	7.2	8
136	From Molecular Achirality to Mesoscopic Helicity: Toward the Development of Circularly Polarized Luminescence-Emitting Liquid Crystal Displays. <i>Small Structures</i> , 2020 , 1, 2000014	8.7	8
135	Hypoxia-activated probe for NIR fluorescence and photoacoustic dual-mode tumor imaging. <i>IScience</i> , 2021 , 24, 102261	6.1	8
134	Mitochondria-Specific Aggregation-Induced Emission Luminogens for Selective Photodynamic Killing of Fungi and Efficacious Treatment of Keratitis. <i>ACS Nano</i> , 2021 ,	16.7	8
133	Mitochondria-targeting NIR fluorescent probe for rapid, highly sensitive and selective visualization of nitroxyl in live cells, tissues and mice. <i>Science China Chemistry</i> , 2020 , 63, 282-289	7.9	8
132	Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AIEgen. <i>Chemical Science</i> , 2020 , 12, 709-717	9.4	8
131	Add the Finishing Touch: Molecular Engineering of Conjugated Small Molecule for High-Performance AIE Luminogen in Multimodal Phototheranostics. <i>Small</i> , 2021 , 17, e2102044	11	8
130	Organometallic AIEgens for biological theranostics. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3281-3297	7.8	8
129	Synchronously boosting type-I photodynamic and photothermal efficacies via molecular manipulation for pancreatic cancer theranostics in the NIR-II window <i>Biomaterials</i> , 2022 , 283, 121476	15.6	8
128	Platinum-AIEgen coordination complex for imaging-guided annihilation of cisplatin-resistant cancer cells. <i>Chemical Communications</i> , 2020 , 56, 7785-7788	5.8	7
127	In vitro anticancer activity of AlEgens. <i>Biomaterials Science</i> , 2019 , 7, 3855-3865	7.4	7
126	One-pot Four-component Synthesis of N2-Substituted 1,2,3-Triazoles. <i>Asian Journal of Organic Chemistry</i> , 2013 , 2, 212-215	3	7
125	Bringing Inherent Charges into Aggregation-Induced Emission Research <i>Accounts of Chemical Research</i> , 2022 ,	24.3	7

124	Trojan Horse-Like Nano-AIE Aggregates Based on Homologous Targeting Strategy and Their Photodynamic Therapy in Anticancer Application. <i>Advanced Science</i> , 2021 , 8, e2102561	13.6	7
123	How Do Molecular Motions Affect Structures and Properties at Molecule and Aggregate Levels?. Journal of the American Chemical Society, 2021 , 143, 11820-11827	16.4	7
122	pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism. <i>Talanta</i> , 2021 , 221, 121621	6.2	7
121	Functional Poly(dihalopentadiene)s: Stereoselective Synthesis, Aggregation-Enhanced Emission and Sensitive Detection of Explosives. <i>Polymers</i> , 2018 , 10,	4.5	7
120	A Nanotheranostic System Combining Lysosomal Cell Death and Nuclear Apoptosis Functions for Synergistic Cancer Therapy and Addressing Drug Resistance. <i>Advanced Functional Materials</i> ,2106091	15.6	7
119	Recent Advances in Aggregation-Induced Emission Materials and Their Biomedical and Healthcare Applications. <i>Advanced Healthcare Materials</i> , 2021 , e2101055	10.1	7
118	In Situ Electrospinning of Aggregation-Induced Emission Nanofibrous Dressing for Wound Healing <i>Small Methods</i> , 2022 , e2101247	12.8	7
117	Deep-Brain Three-Photon Imaging Enabled by Aggregation-Induced Emission Luminogens with Near-Infrared-III Excitation <i>ACS Nano</i> , 2022 ,	16.7	7
116	Aggregation-induced emission luminogen for specific identification of malignant tumour in vivo. <i>Science China Chemistry</i> , 2020 , 63, 393-397	7.9	6
115	BCl3-mediated polycoupling of alkynes and aldehydes: a facile, metal-free multicomponent polymerization route to construct stereoregular functional polymers. <i>Polymer Chemistry</i> , 2016 , 7, 4667-	-4694	6
114	Cationization to boost both type I and type II ROS generation for photodynamic therapy. <i>Biomaterials</i> , 2021 , 280, 121255	15.6	6
113	Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. <i>Advanced Healthcare Materials</i> , 2021 , e2101177	10.1	6
112	Aggregation-Induced Emission Luminogens Sensitized Quasi-2D Hybrid Perovskites with Unique Photoluminescence and High Stability for Fabricating White Light-Emitting Diodes. <i>Advanced Science</i> , 2021 , 8, e2100811	13.6	6
111	Patient-derived microvesicles/AIE luminogen hybrid system for personalized sonodynamic cancer therapy in patient-derived xenograft models. <i>Biomaterials</i> , 2021 , 272, 120755	15.6	6
110	Efficient Perovskite Solar Cells with a Novel Aggregation-Induced Emission Molecule as Hole-Transport Material. <i>Solar Rrl</i> , 2020 , 4, 1900189	7.1	6
109	Recent Advances of AIEgens for Targeted Imaging of Subcellular Organelles. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 52-65	2.2	6
108	The AIE-Active Dual-Cationic Molecular Engineering: Synergistic Effect of Dark Toxicity and Phototoxicity for Anticancer Therapy. <i>Advanced Functional Materials</i> ,2106988	15.6	6
107	Sensitive and specific detection of peroxynitrite and in vivo imaging of inflammation by a limple AIE bioprobe. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1830-1835	7.8	6

106	NIR-II Absorbing Charge Transfer Complexes for Synergistic Photothermal Themodynamic Antimicrobial Therapy and Wounds Healing 2022 , 4, 692-700		6
105	Deep-Red Aggregation-Induced Emission Luminogen Based on Dithiofuvalene-Fused Benzothiadiazole for Lipid Droplet-Specific Imaging 2022 , 4, 159-164		5
104	How do molecular interactions affect fluorescence behavior of AIEgens in solution and aggregate states?. <i>Science China Chemistry</i> , 2022 , 65, 135	7.9	5
103	Aggregate Materials beyond AIEgens. Accounts of Materials Research,	7.5	5
102	9,10-Phenanthrenequinone: A Promising Kernel to Develop Multifunctional Antitumor Systems for Efficient Type I Photodynamic and Photothermal Synergistic Therapy. <i>ACS Nano</i> , 2021 ,	16.7	5
101	Mitochondria-Targeting Phototheranostics by Aggregation-Induced NIR-II Emission Luminogens: Modulating Intramolecular Motion by Electron Acceptor Engineering for Multi-Modal Synergistic Therapy. <i>Advanced Functional Materials</i> ,2110526	15.6	5
100	CO2-Involved and Isocyanide-Based Three-Component Polymerization toward Functional Heterocyclic Polymers with Self-Assembly and Sensing Properties. <i>Macromolecules</i> , 2021 , 54, 4112-4119	,5·5	5
99	Conjugated Polymers with Aggregation-Induced Emission Characteristics for Fluorescence Imaging and Photodynamic Therapy. <i>ChemMedChem</i> , 2021 , 16, 2330-2338	3.7	5
98	Synergistic Enhancement of Fluorescence and Magnetic Resonance Signals Assisted by Albumin Aggregate for Dual-Modal Imaging. <i>ACS Nano</i> , 2021 , 15, 9924-9934	16.7	5
97	Detection of UVA/UVC-induced damage of p53 fragment by rolling circle amplification with AIEgens. <i>Analyst, The</i> , 2016 , 141, 4394-9	5	5
96	Time-Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIE-Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. <i>Angewandte Chemie</i> , 2020 , 132, 9557-9564	3.6	5
	2020, 132, 3331-3304		
95	Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s. <i>Synlett</i> , 2018 , 29, 2523-25	2 28	5
95 94	Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s. <i>Synlett</i> , 2018 , 29, 2523-25 Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced	528 13.6	5
	Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s. <i>Synlett</i> , 2018 , 29, 2523-25 Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Killing of Multidrug-Resistant Bacteria <i>Advanced Science</i>	13.6	
94	Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s. <i>Synlett</i> , 2018 , 29, 2523-25. Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Killing of Multidrug-Resistant Bacteria <i>Advanced Science</i> , 2021 , e2104079 Polarized resonance synchronous spectroscopy as a powerful tool for studying the kinetics and	13.6	5
94	Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s. <i>Synlett</i> , 2018 , 29, 2523-25. Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Killing of Multidrug-Resistant Bacteria <i>Advanced Science</i> , 2021 , e2104079 Polarized resonance synchronous spectroscopy as a powerful tool for studying the kinetics and optical properties of aggregation-induced emission. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12086-120 TBHP/I2-Promoted Oxidative Coupling of Azoles with Benzyl Compounds via Cleavage of Nonactivated C(sp3)-H Bonds under Solvent-Free Conditions. <i>Synlett</i> , 2013 , 24, 1588-1594	13.6 0 9 4	5
94 93 92	Multicomponent Polymerization of Alkynes, Sulfonyl Azide, and Iminophosphorane at Room Temperature for the Synthesis of Hyperbranched Poly(phosphorus amidine)s. <i>Synlett</i> , 2018 , 29, 2523-2525. Precise Molecular Engineering of Type I Photosensitizers with Near-Infrared Aggregation-Induced Emission for Image-Guided Photodynamic Killing of Multidrug-Resistant Bacteria <i>Advanced Science</i> , 2021 , e2104079 Polarized resonance synchronous spectroscopy as a powerful tool for studying the kinetics and optical properties of aggregation-induced emission. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12086-1207 TBHP/I2-Promoted Oxidative Coupling of Azoles with Benzyl Compounds via Cleavage of Nonactivated C(sp3)-H Bonds under Solvent-Free Conditions. <i>Synlett</i> , 2013 , 24, 1588-1594 Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motion-Induced Photo-Hyperthermia for Cancer Therapy <i>Advanced Science</i> , 2022 , e2104885	13.6 094 2.2	5

88	Photomechanical Luminescence from Through-Space Conjugated AlEgens. <i>Angewandte Chemie</i> , 2020 , 132, 8913-8917	3.6	4
87	Graphene Oxide Based Fluorescent DNA Aptasensor for Liver Cancer Diagnosis and Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2102645	15.6	4
86	An easily available ratiometric AIE probe for nitroxyl visualization in vitro and in vivo. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1817-1823	7.8	4
85	Rapid membrane-specific AIEgen featuring with wash-free imaging and sensitive light-excited killing of cells, bacteria, and fungi. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2724-2729	7.8	4
84	Switching energy dissipation pathway: proton-induced transformation of AIE-active self-assemblies to boost photodynamic therapy. <i>Biomaterials Science</i> , 2021 , 9, 4301-4307	7.4	4
83	A Novel Fluorescence Tool for Monitoring Agricultural Industry Chain Based on AIEgens. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 38-51	2.2	4
82	Aggregation-Induced Emission Luminogens for Cell Death Research. ACS Bio & Med Chem Au,		4
81	Effective Therapy of Drug-Resistant Bacterial Infection by Killing Planktonic Bacteria and Destructing Biofilms with Cationic Photosensitizer Based on Phosphindole Oxide <i>Small</i> , 2022 , e22007	43 ¹	4
80	Tumor-derived exosomes co-delivering aggregation-induced emission luminogens and proton pump inhibitors for tumor glutamine starvation therapy and enhanced type-I photodynamic therapy <i>Biomaterials</i> , 2022 , 283, 121462	15.6	4
79	AlkyneAzide Click Polymerization Catalyzed by Magnetically Recyclable Fe3O4/SiO2/Cu2O Nanoparticles. <i>Macromolecular Chemistry and Physics</i> , 2019 , 220, 1900064	2.6	3
78	Nanosized nickel decorated sisal fibers with tailored aggregation structures for catalysis reduction of toxic aromatic compounds. <i>Industrial Crops and Products</i> , 2018 , 119, 226-236	5.9	3
77	A Hierarchical Structure of Flower-Like Zinc Oxide and Poly(Vinyl AlcoholEthylene) Nanofiber Hybrid Membranes for High-Performance Air Filters <i>ACS Omega</i> , 2022 , 7, 3030-3036	3.9	3
76	Fused Heterocyclic Polymers with Aggregation-Induced Emission: Synthesis and Applications. <i>ACS Applied Polymer Materials</i> ,	4.3	3
75	NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics <i>Biosensors</i> , 2022 , 12,	5.9	3
74	Polymerizations of Activated Alkynes. <i>Progress in Polymer Science</i> , 2022 , 126, 101503	29.6	3
73	One-Pot Synthesis of Customized Metal-Phenolic-Network-Coated AIE Dots for In Vivo Bioimaging <i>Advanced Science</i> , 2022 , e2104997	13.6	3
72	AIEgen for cancer discrimination. Materials Science and Engineering Reports, 2021, 146, 100649	30.9	3
71	Biologically excretable AIE nanoparticles wear tumor cell-derived axosome capsIfor efficient NIR-II fluorescence imaging-guided photothermal therapy. <i>Nano Today</i> , 2021 , 41, 101333	17.9	3

(2021-2021)

70	Vision redemption: Self-reporting AIEgens for combined treatment of bacterial keratitis. <i>Biomaterials</i> , 2021 , 279, 121227	15.6	3
69	Facile fabrication of self-shrinkable AIE supramolecular gels based on benzophenone salicylaldehyde hydrazine derivatives. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13705-13711	7.1	3
68	Fluorescent sensing of nucleus density assists in identifying tumor cells using an AIE luminogen. <i>Chemical Engineering Journal</i> , 2021 , 410, 128183	14.7	3
67	In-Situ Generation of N -Heteroaromatic Polymers: Metal-Free Multicomponent Polymerization for Photopatterning, Morphological Imaging and Cr(VI) Sensing. <i>CCS Chemistry</i> ,1-26	7.2	3
66	Aggregation-Induced Emission Materials that Aid in Pharmaceutical Research. <i>Advanced Healthcare Materials</i> , 2021 , e2101067	10.1	3
65	Janus luminogens with bended intramolecular charge transfer: Toward molecular transistor and brain imaging. <i>Matter</i> , 2021 ,	12.7	3
64	TEPP-46-Based AIE Fluorescent Probe for Detection and Bioimaging of PKM2 in Living Cells. <i>Analytical Chemistry</i> , 2021 , 93, 12682-12689	7.8	3
63	Surfactant-Inspired Coassembly Strategy to Integrate Aggregation-Induced Emission Photosensitizer with Organosilica Nanoparticles for Efficient Theranostics. <i>Advanced Functional Materials</i> ,2200503	15.6	3
62	Bonsai-inspired AIE nanohybrid photosensitizer based on vermiculite nanosheets for ferroptosis-assisted oxygen self-sufficient photodynamic cancer therapy. <i>Nano Today</i> , 2022 , 44, 101477	, 17.9	3
61	Programmed Self-Assembly of Protein-Coated AIE-Featured Nanoparticles with Dual Imaging and Targeted Therapy to Cancer Cells. <i>ACS Applied Materials & Discrete Section</i> , 12, 29641-29649	9.5	2
60	An AIE-Active Conjugated Polymer with High ROS-Generation Ability and Biocompatibility for Efficient Photodynamic Therapy of Bacterial Infections. <i>Angewandte Chemie</i> , 2020 , 132, 10038-10042	3.6	2
59	Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities. <i>Topics in Current Chemistry Collections</i> , 2017 , 33-71	1.8	2
58	Metal- and Base-Free Three-Component Reaction of Ynones, Sodium Azide, and Alkyl Halides: Highly Regioselective Synthesis of 2,4,5-Trisubstituted 1,2,3-NH-Triazoles. <i>Synlett</i> , 2010 , 2010, 1617-16.	2 <mark>2</mark> .2	2
57	The role of amide (n,🖰) transitions in polypeptide clusteroluminescence. <i>Cell Reports Physical Science</i> , 2022 , 3, 100716	6.1	2
56	Metal-Based Aggregation-Induced Emission Theranostic Systems. ChemMedChem, 2021,	3.7	2
55	A X-ray Excitable Vibrational AIE System Based on Platinum (II) Salts		2
54	An aggregation-induced emission platform for efficient Golgi apparatus and endoplasmic reticulum specific imaging. <i>Chemical Science</i> , 2021 , 12, 13949-13957	9.4	2
53	Oxygen and sulfur-based pure n-electron dendrimeric systems: generation-dependent clusteroluminescence towards multicolor cell imaging and molecular ruler. <i>Science China Chemistry</i> , 2021 , 64, 1990	7.9	2

52	Donor/Ebridge Manipulation for Constructing a Stable NIR-II Aggregation-Induced Emission Luminogen with Balanced Phototheranostic Performance**. <i>Angewandte Chemie</i> , 2021 , 133, 26973	3.6	2
51	Water-Soluble Organic Nanoparticles with Programable Intermolecular Charge Transfer for NIR-II Photothermal Anti-Bacterial Therapy. <i>Angewandte Chemie</i> , 2021 , 133, 11864-11868	3.6	2
50	Cationic Tricyclic AlEgens for Concomitant Bacterial Discrimination and Inhibition. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100136	10.1	2
49	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. <i>Angewandte Chemie</i> , 2021 , 133, 19371-19380	3.6	2
48	Innovative Verfahren zur Synthese von Luminogenen mit aggregationsinduzierter Emission. <i>Angewandte Chemie</i> , 2021 , 133, 15856-15876	3.6	2
47	A DNA tetrahedron-loaded natural photosensitizer with aggregation-induced emission characteristics for boosting fluorescence imaging-guided photodynamic therapy. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 5410-5417	7.8	2
46	A biocompatible dual-AIEgen system without spectral overlap for quantitation of microbial viability and monitoring of biofilm formation. <i>Materials Horizons</i> , 2021 , 8, 1816-1824	14.4	2
45	Biomimetic Glucan Particles with Aggregation-Induced Emission Characteristics for Noninvasive Monitoring of Transplant Immune Response. <i>ACS Nano</i> , 2021 ,	16.7	2
44	Photodynamic control of harmful algal blooms by an ultra-efficient and degradable AIEgen-based photosensitizer. <i>Chemical Engineering Journal</i> , 2021 , 417, 127890	14.7	2
43	A fluorescent probe with dual acrylate sites for discrimination of different concentration ranges of cysteine in living cells. <i>Analytica Chimica Acta</i> , 2021 , 1176, 338763	6.6	2
42	Donor engineering on flavonoid-based probes to enhance the fluorescence brightness in water: Design, characterization, photophysical properties, and application for cysteine detection. <i>Sensors and Actuators B: Chemical</i> , 2021 , 345, 130367	8.5	2
41	Highly efficient photothermal nanoparticles for the rapid eradication of bacterial biofilms. <i>Nanoscale</i> , 2021 , 13, 13610-13616	7.7	2
40	A mitochondria-targeted AIE photosensitizer for enhancing specificity and efficacy of ferroptosis inducer. <i>Science China Chemistry</i> ,1	7.9	2
39	Aggregation-Induced Emission Boosting the Study of Polymer Science <i>Macromolecular Rapid Communications</i> , 2022 , e2200080	4.8	2
38	AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. <i>Biosensors</i> , 2022 , 12, 348	5.9	2
37	Three-Pronged Attack by Hybrid Nanoplatform Involving MXenes, Upconversion Nanoparticle and Aggregation-Induced Emission Photosensitizer for Potent Cancer Theranostics. <i>Small Methods</i> ,2200393	12.8	2
36	A potent luminogen with NIR-IIb excitable AIE features for ultradeep brain vascular and hemodynamic three-photon imaging. <i>Biomaterials</i> , 2022 , 287, 121612	15.6	2
35	Autonomous Visualization of Damage in Polymers by Metal-Free Polymerizations of Microencapsulated Activated Alkynes <i>Advanced Science</i> , 2022 , e2105395	13.6	1

34	Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging <i>Chemical Science</i> , 2022 , 13, 3129-3139	9.4	1
33	Aggregation-induced emission (AIE): emerging technology based on aggregate science. <i>Pure and Applied Chemistry</i> , 2021 ,	2.1	1
32	Endowing AIE with Extraordinary Potential: A New Au(I)-Containing AIEgen for Bimodal Bioimaging-Guided Multimodal Synergistic Cancer Therapy. <i>Advanced Functional Materials</i> , 2022 , 32, 2108199	15.6	1
31	Exosome-Mimetic Supramolecular Vesicles with Reversible and Controllable Fusion and Fission**. <i>Angewandte Chemie</i> , 2020 , 132, 21694-21698	3.6	1
30	A Novel Fluorescent Probe for ATP Detection Based on Synergetic Effect of Aggregation-induced Emission and Counterion Displacement. <i>Chemical Research in Chinese Universities</i> , 2021 , 37, 166-170	2.2	1
29	Benzoperylene-grafted and Cu2+ chelated polymeric nanoparticles for GSH depletion and chemodynamic therapy. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 2442-2451	7.8	1
28	Aggregation-Induced Emission Luminogen-Based Dual-Mode Enzyme-Linked Immunosorbent Assay for Ultrasensitive Detection of Cancer Biomarkers in a Broad Concentration Range <i>ACS Sensors</i> , 2022 , 7, 766-774	9.2	1
27	Aggregation-induced emission luminogens for augmented photosynthesis. <i>Exploration</i> ,20210053		1
26	Recent advances in aggregation-induced emission luminogens in photoacoustic imaging <i>European Journal of Nuclear Medicine and Molecular Imaging</i> , 2022 , 1	8.8	1
25	Recent advances of luminogens with aggregation-induced emission in multi-photon theranostics. <i>Applied Physics Reviews</i> , 2021 , 8, 041328	17.3	1
24	Type-I AIE photosensitizer triggered cascade catalysis system for tumor targeted therapy and postoperative recurrence suppression. <i>Chemical Engineering Journal</i> , 2022 , 136381	14.7	1
23	Aggregation-induced emission: An emerging concept in brain science. <i>Biomaterials</i> , 2022 , 286, 121581	15.6	1
22	Tuning non-radiative decay channels via symmetric/asymmetric substituent effects on phenazine derivatives and their phototherapy switch between dynamic and thermal processes. <i>Materials Chemistry Frontiers</i> , 2022 , 6, 316-324	7.8	0
21	Reverse Thinking of the Aggregation-Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. <i>Angewandte Chemie</i> , 2020 , 132, 20551-20555	3.6	О
20	Single-fluorogen polymers with color-tunable aggregation-induced emission. <i>Matter</i> , 2021 , 4, 2587-258	8912.7	О
19	Lignosulfonate/diblock copolymer polyion complexes with aggregation-enhanced and pH-switchable fluorescence for information storage and encryption. <i>International Journal of Biological Macromolecules</i> , 2021 , 187, 722-731	7.9	O
18	Cellular organelle-targeted smart AIEgens in tumor detection, imaging and therapeutics. <i>Coordination Chemistry Reviews</i> , 2022 , 462, 214508	23.2	0
17	In Vivo Phototheranostics Application of AIEgen-based Probes 2022 , 447-464		Ο

16	Clusterization-Triggered Emission 2022 , 153-175		О
15	Tetraphenylpyrazine-based AIEgens 2022, 1-21		O
14	AIE-active Emitters and Their Applications in OLEDs 2022, 1-26		О
13	A green and efficient strategy facilitates continuous solar-induced steam generation based on tea-assisted synthesis of gold nanoflowers. <i>Nano Research</i> ,1	10	O
12	Push P ull AIEgens 2022 , 575-608		O
11	Activated Internal Alkyne-Based Polymerization. Chinese Journal of Chemistry,	4.9	O
10	In Situ Generation of Heterocyclic Polymers by Triple-Bond Based Polymerizations. <i>Macromolecular Rapid Communications</i> , 2021 , e2100524	4.8	
9	AIE 2022 , 269-295		
8	AIE-active Fluorescence Probes for Enzymes and Their Applications in Disease Theranostics 2022 , 355	-397	
7	Activated Alkynes in Metal-free Bioconjugation 2022 , 471-491		
6	Understanding the AIE Mechanism at the Molecular Level 2022 , 27-53		
5	AIE Fluorescent Polymersomes 2022 , 311-339		
4	AIE-based Systems for Imaging and Image-guided Killing of Pathogens 2022 , 297-327		
3	Aggregation-induced Emission from the Sixth Main Group 2022 , 119-141		
2	AIE-active Polymer 2022 , 531-554		
1	Aggregation-induced emission polymers 2022 , 45-86		