Simin Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6557010/publications.pdf

Version: 2024-02-01

79 3,704 24 60
papers citations h-index g-index

84 84 84 2927 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Evidenced cucurbit[<i>n</i>)]uril-based host–guest interactions using single-molecule force spectroscopy. Chemical Communications, 2022, 58, 1736-1739.	4.1	6
2	Supramolecular CRISPR-OFF switches with host–guest chemistry. Nucleic Acids Research, 2022, 50, 1241-1255.	14.5	6
3	Dynamic Interconversions of Single Molecules Probed by Recognition Tunneling at Cucurbit[7]urilâ€Functionalized Supramolecular Junctions. Angewandte Chemie, 2022, 134, .	2.0	4
4	Photodimerization of azaanthracene derivatives mediated by cucurbit $[10]$ uril. Chinese Chemical Letters, 2022, , .	9.0	1
5	Dynamic Interconversions of Single Molecules Probed by Recognition Tunneling at Cucurbit[7]urilâ€Functionalized Supramolecular Junctions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
6	Cucurbit[<i>n</i>]uril-based host-guest interaction enhancing organic room-temperature phosphorescence of phthalic anhydride derivatives in aqueous solution. New Journal of Chemistry, 2022, 46, 11025-11029.	2.8	5
7	Red aqueous room-temperature phosphorescence modulated by anion–π and intermolecular electronic coupling interactions. Chemical Science, 2022, 13, 7247-7255.	7.4	13
8	Triple Stack of a Viologen Derivative in a CB[10] Pair. Organic Letters, 2021, 23, 5283-5287.	4.6	15
9	Tunable White-Light Emissions of Azapyrene Derivatives with Cucurbit[<i>n</i>) uril Hosts in Aqueous Solution. Organic Letters, 2021, 23, 6633-6637.	4.6	16
10	Achieving Enhanced Photochromic Properties of Diarylethene through Hostâ€Guest Interaction in Aqueous Solution. Chemistry - A European Journal, 2021, 27, 16153-16160.	3.3	10
11	Nanocollision mediated electrochemical sensing of host–guest chemistry at a nanoelectrode surface. Faraday Discussions, 2021, 233, 222-231.	3.2	3
12	Host–guest interaction-directed strategy for managing mechanochromic luminescence behavior by modulating molecular packing and conformation. Journal of Materials Chemistry C, 2021, 9, 17307-17312.	5.5	10
13	Rotaxanating Metallo-supramolecular Nano-cylinder Helicates to Switch DNA Junction Binding. Journal of the American Chemical Society, 2020, 142, 20651-20660.	13.7	24
14	Modular Design of Supramolecular Organic Frameworks for Imageâ€Guided Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2004452.	14.9	17
15	Observing dynamic molecular changes at single-molecule level in a cucurbituril based plasmonic molecular junction. Nanoscale, 2020, 12, 17103-17112.	5. 6	16
16	Kinetically Dependent Self-Assembly of Chiral Block Copolymers under 3D Confinement. Macromolecules, 2020, 53, 4214-4223.	4.8	28
17	Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta, 2020, 219, 121213.	5.5	18
18	Reliably Probing the Conductance of a Molecule in a Cavity via van der Waals Contacts. Journal of Physical Chemistry C, 2020, 124, 16143-16148.	3.1	15

#	Article	IF	CITATIONS
19	Host–guest interaction-mediated fabrication of aggregation-induced emission supramolecular hydrogel for use as aqueous light-harvesting systems. Supramolecular Chemistry, 2020, 32, 445-451.	1.2	10
20	Selfâ€Assembly of Supramolecular DNA Amphiphiles through Host–Guest Interaction and Their Stimuliâ€Responsiveness. Macromolecular Rapid Communications, 2020, 41, e2000022.	3.9	11
21	Host–guest interaction-mediated fabrication of a hybrid microsphere-structured supramolecular hydrogel showing high mechanical strength. Soft Matter, 2020, 16, 3416-3424.	2.7	17
22	EPR Spectroscopy: A Powerful Tool to Analyze Supramolecular Host•Guest Complexes of Stable Radicals with Cucurbiturils. Molecules, 2020, 25, 776.	3.8	8
23	Emission enhancement of cationic tetraphenylethylene derivatives by encapsulation in a cucurbit[10]uril host in water. New Journal of Chemistry, 2020, 44, 3185-3188.	2.8	6
24	Expected and unexpected photoreactions of 9-(10-)substituted anthracene derivatives in cucurbit[<i>n</i>)uril hosts. Chemical Science, 2020, 11, 4779-4785.	7.4	30
25	Regulating Host–Guest Interactions between Cucurbit[7]uril and Guests on Gold Surfaces for Rational Engineering of Gold Nanoparticles. ACS Applied Nano Materials, 2020, 3, 4283-4291.	5.0	12
26	Cucurbit $[\langle i \rangle n \langle i \rangle]$ urils Based Supramolecular Catalysis. Series on Chemistry, Energy and the Environment, 2020, , 149-192.	0.3	0
27	Biological Systems Involving Cucurbituril., 2020,, 731-757.		1
28	Self-healing and high reusability of Au nanoparticles catalyst based on supramolecular hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123954.	4.7	13
29	Fabrication, characterization and adsorption properties of cucurbit[7]uril-functionalized polycaprolactone electrospun nanofibrous membranes. Beilstein Journal of Organic Chemistry, 2019, 15, 992-999.	2.2	4
30	Reversible morphological tuning of DNA–perylenebisdiimide assemblies through host–guest interaction. Chemical Communications, 2019, 55, 3658-3661.	4.1	13
31	Conical nanofluidic channel for selective quantitation of melamine in combination with \hat{l}^2 -cyclodextrin and a single-walled carbon nanotube. Biosensors and Bioelectronics, 2019, 127, 200-206.	10.1	28
32	Biological Systems Involving Cucurbituril. , 2019, , 1-28.		0
33	A matrix-assisted laser desorption/ionization mass spectrometry method for the analysis of small molecules by integrating chemical labeling with the supramolecular chemistry of cucurbituril. Analytica Chimica Acta, 2018, 1026, 77-86.	5.4	5
34	A study of binding interactions between terpyridine derivatives and cucurbit[10]uril. Supramolecular Chemistry, 2018, 30, 706-712.	1.2	6
35	Cucurbit[10]uril-based chemistry. Chinese Chemical Letters, 2018, 29, 1560-1566.	9.0	56
36	Enhancement of metal–metal interactions inside a large-cavity synthetic host in water. Chemical Communications, 2018, 54, 2169-2172.	4.1	26

#	Article	IF	CITATIONS
37	Effects of cucurbit[$\langle i \rangle n \langle i \rangle$] uril ($\langle i \rangle n \langle i \rangle$ = 7, 8, 10) hosts on the formation and stabilization of a naphthalenediimide (NDI) radical anion. Organic and Biomolecular Chemistry, 2018, 16, 3809-3815.	2.8	25
38	Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH ₄ . Nanotechnology, 2018, 29, 044002.	2.6	15
39	Controllable Synthesis and Catalytic Performance of Gold Nanoparticles with Cucurbit[n]urils (n =) Tj ETQq1 1 0	.784314 r 4.1	gBT/Overloc
40	Facile synthesis of 1.3Ânm monodispersed Ag nanoclusters in an aqueous solution and their antibacterial activities for E. coli. RSC Advances, 2018, 8, 30207-30214.	3.6	3
41	Probing guest compounds enabling the facile isolation of cucurbit[10]uril. Science China Chemistry, 2018, 61, 787-791.	8.2	18
42	A Highly Selective and Strong Anti-Interference Host-Guest Complex as Fluorescent Probe for Detection of Amantadine by Indicator Displacement Assay. Molecules, 2018, 23, 947.	3.8	13
43	Cucurbit[n]uril (n = 6, 7) Based Carbon-Gold Hybrids with Peroxidase-Like Activity. Nanomaterials, 2018, 8, 273.	4.1	8
44	Near Infrared Light Triggered Cucurbit[7]uril-Stabilized Gold Nanostars as a Supramolecular Nanoplatform for Combination Treatment of Cancer. Bioconjugate Chemistry, 2018, 29, 2855-2866.	3 . 6	34
45	Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. International Journal of Molecular Sciences, 2018, 19, 2283.	4.1	16
46	Cucurbituril mediated single molecule detection and identification via recognition tunneling. Nanotechnology, 2018, 29, 365501.	2.6	26
47	J-type dimer of Auramine O dye upon encapsulation in cucurbit[8]uril host showing intense excimer emission. Dyes and Pigments, 2018, 159, 331-336.	3.7	9
48	Inhibition and Stabilization: Cucurbituril Induced Distinct Effects on the Schiff Base Reaction. Journal of Organic Chemistry, 2017, 82, 3298-3301.	3. 2	23
49	Cucurbit[10]uril-Based [2]Rotaxane: Preparation and Supramolecular Assembly-Induced Fluorescence Enhancement. Journal of Organic Chemistry, 2017, 82, 5590-5596.	3.2	53
50	Matrix-assisted laser desorption/ionization mass spectrometry for the analysis of polyamines in plant micro-tissues using cucurbituril as a host molecule. Analytica Chimica Acta, 2017, 987, 56-63.	5.4	11
51	Synthesis of Au-Pd Bimetallic Nanoflowers for Catalytic Reduction of 4-Nitrophenol. Nanomaterials, 2017, 7, 239.	4.1	58
52	Low-Cost Nanocarbon-Based Peroxidases from Graphite and Carbon Fibers. Applied Sciences (Switzerland), 2017, 7, 924.	2.5	10
53	Preparation of Rh/Ni Bimetallic Nanoparticles and Their Catalytic Activities for Hydrogen Generation from Hydrolysis of KBH4. Catalysts, 2017, 7, 125.	3.5	20
54	A Comparison Reduction of 4-Nitrophenol by Gold Nanospheres and Gold Nanostars. Catalysts, 2017, 7, 38.	3 . 5	82

#	Article	IF	CITATIONS
55	Self-assembly of DNA-based Nanomaterials and Potential Application in Drug Delivery. Current Topics in Medicinal Chemistry, 2017, 17, 1829-1842.	2.1	7
56	In situ Immobilization of Copper Nanoparticles on Polydopamine Coated Graphene Oxide for H2O2 Determination. PLoS ONE, 2016, 11, e0157926.	2.5	15
57	Low temperature synthesis of LiSi2N3 nanobelts via molten salt nitridation and their photoluminescence properties. RSC Advances, 2016, 6, 68615-68618.	3.6	17
58	Doubly, Triply and Multiply Pleated Sheets of Bipyridinium Radical Cationâ€Incorporated Polymers Tuned by Four Cucurbiturils. ChemistrySelect, 2016, 1, 6792-6796.	1.5	9
59	Supramolecular Controlled Cargo Release via Near Infrared Tunable Cucurbit[7]uril-Gold Nanostars. Scientific Reports, 2016, 6, 22239.	3.3	24
60	From Packed "Sandwich―to "Russian Doll― Assembly by Charge-Transfer Interactions in Cucurbit[10]uril. Chemistry - A European Journal, 2016, 22, 17493-17493.	3.3	2
61	From Packed "Sandwich―to "Russian Doll― Assembly by Chargeâ€Transfer Interactions in Cucurbit[10]uril. Chemistry - A European Journal, 2016, 22, 17612-17618.	3.3	50
62	Guest Packing Motifs within a Supramolecular Nanocapsule and a Covalent Analogue. Journal of the American Chemical Society, 2013, 135, 4314-4324.	13.7	86
63	Solvent denaturation of supramolecular capsules assembled via the hydrophobic effect. Chemical Communications, 2011, 47, 3574.	4.1	18
64	An improved synthesis of â€~octa-acid' deep-cavity cavitand. Supramolecular Chemistry, 2011, 23, 480-485.	1.2	31
65	A versatile and modular approach to functionalisation of deep-cavity cavitands via"click―chemistry. Chemical Communications, 2011, 47, 9036.	4.1	20
66	Kinetic resolution of constitutional isomers controlled by selective protection inside a supramolecular nanocapsule. Nature Chemistry, 2010, 2, 847-852.	13.6	114
67	Divergent Dendronization of Deepâ€Cavity Cavitands to Tune Host Solubility. Israel Journal of Chemistry, 2009, 49, 31-40.	2.3	6
68	Ternary Complexes Comprising Cucurbit[10]uril, Porphyrins, and Guests. Angewandte Chemie - International Edition, 2008, 47, 2657-2660.	13.8	97
69	High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule. Chemical Communications, 2008, , 3709.	4.1	125
70	Dendronized Supramolecular Nanocapsules: pH Independent, Water-Soluble, Deep-Cavity Cavitands Assemble via the Hydrophobic Effect. Journal of the American Chemical Society, 2008, 130, 14430-14431.	13.7	68
71	A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20737-20742.	7.1	534
72	Mechanism of the Conversion of Inverted CB[6] to CB[6]. Journal of Organic Chemistry, 2007, 72, 6840-6847.	3.2	40

Simin Liu

#	ARTICLE	IF	CITATION
73	Refolding Foldamers:Â Triazene-Arylene Oligomers That Change Shape with Chemical Stimuli. Journal of the American Chemical Society, 2007, 129, 11232-11241.	13.7	58
74	Nor-Seco-Cucurbit[10]uril Exhibits Homotropic Allosterism. Journal of the American Chemical Society, 2006, 128, 14744-14745.	13.7	167
75	The Cucurbit[n]uril Family:Â Prime Components for Self-Sorting Systems. Journal of the American Chemical Society, 2005, 127, 15959-15967.	13.7	786
76	Cucurbit[10]uril. Journal of the American Chemical Society, 2005, 127, 16798-16799.	13.7	298
77	The Inverted Cucurbit[n]uril Family. Journal of the American Chemical Society, 2005, 127, 18000-18001.	13.7	162
78	Construction of Pseudorotaxanes and Rotaxanes Based on Cucurbit[n]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 50, 203-207.	1.6	17
79	Facile synthesis of novel macrocyclic polyamines derived from diphenylglycolurilElectronic supplementary information (ESI) available: ESI mass spectra of 5a, 6, alone and with added Ni(CH3COO)2, and 7. See http://www.rsc.org/suppdata/nj/b4/b400123k/. New Journal of Chemistry, 2004, 28, 562.	2.8	7