Dayoung Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6556882/publications.pdf Version: 2024-02-01

DAVOLING KANG

#	Article	IF	CITATIONS
1	Electrode Materials for Rechargeable Sodiumâ€lon Batteries: Potential Alternatives to Current Lithiumâ€lon Batteries. Advanced Energy Materials, 2012, 2, 710-721.	10.2	2,944
2	Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science, 2006, 311, 977-980.	6.0	2,369
3	Aqueous Rechargeable Li and Na Ion Batteries. Chemical Reviews, 2014, 114, 11788-11827.	23.0	1,183
4	Understanding the Degradation Mechanisms of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Material in Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300787.	10.2	893
5	Recent Progress in Electrode Materials for Sodiumâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1600943.	10.2	815
6	Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes. Science, 2009, 324, 1051-1055.	6.0	688
7	Sodium Storage Behavior in Natural Graphite using Etherâ€based Electrolyte Systems. Advanced Functional Materials, 2015, 25, 534-541.	7.8	625
8	Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702774.	10.2	615
9	Flexible energy storage devices based on graphene paper. Energy and Environmental Science, 2011, 4, 1277.	15.6	536
10	Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 15478-15485.	6.6	517
11	A Novel Highâ€Energy Hybrid Supercapacitor with an Anatase TiO ₂ –Reduced Graphene Oxide Anode and an Activated Carbon Cathode. Advanced Energy Materials, 2013, 3, 1500-1506.	10.2	510
12	Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Letters, 2012, 12, 4810-4816.	4.5	494
13	Galvanic Replacement Reactions in Metal Oxide Nanocrystals. Science, 2013, 340, 964-968.	6.0	472
14	Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. Journal of the American Chemical Society, 2017, 139, 6669-6674.	6.6	451
15	Factors that affect Li mobility in layered lithium transition metal oxides. Physical Review B, 2006, 74, .	1.1	431
16	Facile Synthesis of Nb ₂ O ₅ @Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano, 2015, 9, 7497-7505.	7.3	411
17	Superior Rechargeability and Efficiency of Lithium–Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angewandte Chemie - International Edition, 2014, 53, 3926-3931.	7.2	407
18	New Iron-Based Mixed-Polyanion Cathodes for Lithium and Sodium Rechargeable Batteries: Combined First Principles Calculations and Experimental Study. Journal of the American Chemical Society, 2012, 134, 10369-10372.	6.6	395

#	Article	IF	CITATIONS
19	A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability. Journal of the American Chemical Society, 2013, 135, 13870-13878.	6.6	393
20	The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni. Electrochemistry Communications, 2004, 6, 1144-1148.	2.3	390
21	Advanced Hybrid Supercapacitor Based on a Mesoporous Niobium Pentoxide/Carbon as High-Performance Anode. ACS Nano, 2014, 8, 8968-8978.	7.3	380
22	The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Communications, 2004, 132, 181-186.	0.9	369
23	Sodium intercalation chemistry in graphite. Energy and Environmental Science, 2015, 8, 2963-2969.	15.6	369
24	Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Advanced Materials, 2018, 30, e1704682.	11.1	366
25	Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today, 2018, 19, 84-107.	6.2	365
26	Highâ€Performance Sodiumâ€ion Hybrid Supercapacitor Based on Nb ₂ O ₅ @Carbon Core–Shell Nanoparticles and Reduced Graphene Oxide Nanocomposites. Advanced Functional Materials, 2016, 26, 3711-3719.	7.8	363
27	Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon, 2011, 49, 326-332.	5.4	357
28	Recent progress on flexible lithium rechargeable batteries. Energy and Environmental Science, 2014, 7, 538-551.	15.6	355
29	Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nature Communications, 2015, 6, 8253.	5.8	352
30	Scalable Fabrication of Silicon Nanotubes and their Application to Energy Storage. Advanced Materials, 2012, 24, 5452-5456.	11.1	338
31	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	13.3	328
32	Rational design of redox mediators for advanced Li–O2 batteries. Nature Energy, 2016, 1, .	19.8	321
33	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	5.8	316
34	Reaction chemistry in rechargeable Li–O ₂ batteries. Chemical Society Reviews, 2017, 46, 2873-2888.	18.7	314
35	Toward a Lithium–"Air―Battery: The Effect of CO ₂ on the Chemistry of a Lithium–Oxygen Cell. Journal of the American Chemical Society, 2013, 135, 9733-9742.	6.6	307
36	A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. Journal of Materials Chemistry, 2012, 22, 20535.	6.7	306

#	Article	IF	CITATIONS
37	Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nature Communications, 2018, 9, 4164.	5.8	304
38	Enhanced Power and Rechargeability of a Liâ°'O ₂ Battery Based on a Hierarchicalâ€Fibril CNT Electrode. Advanced Materials, 2013, 25, 1348-1352.	11.1	299
39	Unexpected discovery of low-cost maricite NaFePO ₄ as a high-performance electrode for Na-ion batteries. Energy and Environmental Science, 2015, 8, 540-545.	15.6	299
40	A Family of Highâ€Performance Cathode Materials for Naâ€ion Batteries, Na ₃ (VO _{1â^'<i>x</i>} PO ₄) ₂ F _{1+2<i>x</i>} (0 â' 24, 4603-4614.	‰)¤ŢjĘTQc	10 0 0 rgBT /C
41	Fabrication of FeF ₃ Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries. Advanced Materials, 2010, 22, 5260-5264.	11.1	270
42	Critical Role of Oxygen Evolved from Layered Li–Excess Metal Oxides in Lithium Rechargeable Batteries. Chemistry of Materials, 2012, 24, 2692-2697.	3.2	255
43	Biologically inspired pteridine redox centres for rechargeable batteries. Nature Communications, 2014, 5, 5335.	5.8	254
44	Understanding the Electrochemical Mechanism of the New Iron-Based Mixed-Phosphate Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) in a Na Rechargeable Battery. Chemistry of Materials, 2013, 25, 3614-3622.	3.2	237
45	Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na _{0.44} MnO ₂ for Sodium-Ion Battery. Chemistry of Materials, 2012, 24, 1205-1211.	3.2	223
46	Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay Among Guest Ions, Solvent, and Graphite Host. Advanced Energy Materials, 2017, 7, 1601519.	10.2	219
47	Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. Journal of Materials Chemistry, 2010, 20, 10179.	6.7	211
48	Organic Nanohybrids for Fast and Sustainable Energy Storage. Advanced Materials, 2014, 26, 2558-2565.	11.1	210
49	Effect of High Voltage on the Structure and Electrochemistry of LiNi0.5Mn0.5O2:Â A Joint Experimental and Theoretical Study. Chemistry of Materials, 2006, 18, 4768-4781.	3.2	203
50	Effects of sulfur doping on graphene-based nanosheets for use as anode materials in lithium-ion batteries. Journal of Power Sources, 2014, 262, 79-85.	4.0	203
51	Fabrication and Electrochemical Characterization of TiO ₂ Three-Dimensional Nanonetwork Based on Peptide Assembly. ACS Nano, 2009, 3, 1085-1090.	7.3	195
52	Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nature Communications, 2019, 10, 2598.	5.8	195
53	Carbonization of a stable \hat{l}^2 -sheet-rich silk protein into a pseudographitic pyroprotein. Nature Communications, 2015, 6, 7145.	5.8	192
54	All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Scientific Reports, 2014, 4, 5278.	1.6	185

#	Article	IF	CITATIONS
55	Progress in the Development of Sodium″on Solid Electrolytes. Small Methods, 2017, 1, 1700219.	4.6	180
56	SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Research, 2010, 3, 813-821.	5.8	178
57	Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2017, 9, 3723-3732.	4.0	177
58	Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy and Environmental Science, 2015, 8, 3325-3335.	15.6	175
59	Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Research, 2011, 4, 505-510.	5.8	170
60	Graphene for advanced Li/S and Li/air batteries. Journal of Materials Chemistry A, 2014, 2, 33-47.	5.2	166
61	Exfoliation of Non-Oxidized Graphene Flakes for Scalable Conductive Film. Nano Letters, 2012, 12, 2871-2876.	4.5	163
62	Li ₃ BO ₃ –Li ₂ CO ₃ : Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries. Chemistry of Materials, 2018, 30, 8190-8200.	3.2	162
63	High Energy Organic Cathode for Sodium Rechargeable Batteries. Chemistry of Materials, 2015, 27, 7258-7264.	3.2	160
64	Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today, 2019, 29, 26-36.	8.3	156
65	Phase Transitions in the LiNi0.5Mn0.5O2 System with Temperature. Chemistry of Materials, 2007, 19, 1790-1800.	3.2	152
66	A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries. Energy and Environmental Science, 2013, 6, 3570.	15.6	152
67	Synthesis of Diphenylalanine/Cobalt Oxide Hybrid Nanowires and Their Application to Energy Storage. ACS Nano, 2010, 4, 159-164.	7.3	150
68	Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Scientific Reports, 2015, 5, 18053.	1.6	150
69	Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy torage Compound. Angewandte Chemie - International Edition, 2013, 52, 8322-8328.	7.2	147
70	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	23.0	142
71	A Stretchable Polymer–Carbon Nanotube Composite Electrode for Flexible Lithiumâ€lon Batteries: Porosity Engineering by Controlled Phase Separation. Advanced Energy Materials, 2012, 2, 976-982.	10.2	141
72	Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2015, 162, A2447-A2467.	1.3	141

#	Article	IF	CITATIONS
73	Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chemistry, 2017, 19, 2980-2985.	4.6	139
74	Redoxâ€Active Organic Compounds for Future Sustainable Energy Storage System. Advanced Energy Materials, 2020, 10, 2001445.	10.2	139
75	Multicomponent Effects on the Crystal Structures and Electrochemical Properties of Spinel-Structured M ₃ O ₄ (M = Fe, Mn, Co) Anodes in Lithium Rechargeable Batteries. Chemistry of Materials, 2012, 24, 720-725.	3.2	138
76	Ternary metal fluorides as high-energy cathodes with low cycling hysteresis. Nature Communications, 2015, 6, 6668.	5.8	138
77	Highâ€Performance Hybrid Supercapacitor Based on Grapheneâ€Wrapped Li ₄ Ti ₅ O ₁₂ and Activated Carbon. ChemElectroChem, 2014, 1, 125-130.	1.7	137
78	Going Beyond Lithium Hybrid Capacitors: Proposing a New Highâ€Performing Sodium Hybrid Capacitor System for Nextâ€Generation Hybrid Vehicles Made with Bioâ€Inspired Activated Carbon. Advanced Energy Materials, 2016, 6, 1502199.	10.2	137
79	A New Water Oxidation Catalyst: Lithium Manganese Pyrophosphate with Tunable Mn Valency. Journal of the American Chemical Society, 2014, 136, 4201-4211.	6.6	136
80	Dissolution and ionization of sodium superoxide in sodium–oxygen batteries. Nature Communications, 2016, 7, 10670.	5.8	129
81	Mineralization of Selfâ€assembled Peptide Nanofibers for Rechargeable Lithium Ion Batteries. Advanced Materials, 2010, 22, 5537-5541.	11.1	127
82	Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy, 2015, 16, 62-70.	8.2	124
83	Multi-redox Molecule for High-Energy Redox Flow Batteries. Joule, 2018, 2, 1771-1782.	11.7	123
84	Exploiting Lithium–Ether Coâ€Intercalation in Graphite for Highâ€Power Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700418.	10.2	122
85	Combined Firstâ€Principle Calculations and Experimental Study on Multiâ€Component Olivine Cathode for Lithium Rechargeable Batteries. Advanced Functional Materials, 2009, 19, 3285-3292.	7.8	121
86	Sodiumâ€lon Storage in Pyroproteinâ€Based Carbon Nanoplates. Advanced Materials, 2015, 27, 6914-6921.	11.1	120
87	The Role of Interlayer Chemistry in Liâ€Metal Growth through a Garnetâ€Type Solid Electrolyte. Advanced Energy Materials, 2020, 10, 1903993.	10.2	119
88	Sodium–oxygen batteries with alkyl-carbonate and ether based electrolytes. Physical Chemistry Chemical Physics, 2013, 15, 3623.	1.3	118
89	Hybrid Cellular Nanosheets for High-Performance Lithium-Ion Battery Anodes. Journal of the American Chemical Society, 2015, 137, 11954-11961.	6.6	114
90	Abnormal self-discharge in lithium-ion batteries. Energy and Environmental Science, 2018, 11, 970-978.	15.6	114

#	Article	IF	CITATIONS
91	Phase Stability Study of Li[sub 1â^'x]MnPO[sub 4] (0≤â‰⊉) Cathode for Li Rechargeable Battery. Journal of the Electrochemical Society, 2009, 156, A635.	1.3	113
92	New Insight into Microstructure Engineering of Niâ€Rich Layered Oxide Cathode for High Performance Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2010095.	7.8	113
93	Cu-doped P2-Na _{0.5} Ni _{0.33} Mn _{0.67} O ₂ encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. Journal of Materials Chemistry A, 2017, 5, 8408-8415.	5.2	109
94	Carbon nanotube-amorphous FePO4 core–shell nanowires as cathode material for Li ion batteries. Chemical Communications, 2010, 46, 7409.	2.2	107
95	Neutron and X-ray Diffraction Study of Pyrophosphate-Based Li _{2–<i>x</i>} MP ₂ O ₇ (M = Fe, Co) for Lithium Rechargeable Battery Electrodes. Chemistry of Materials, 2011, 23, 3930-3937.	3.2	106
96	Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO ₂ Anodes in Sodiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1802099.	7.8	106
97	Permselective metal–organic framework gel membrane enables long-life cycling of rechargeable organic batteries. Nature Nanotechnology, 2021, 16, 77-84.	15.6	105
98	Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy and Environmental Science, 2019, 12, 3144-3155.	15.6	104
99	The potential for long-term operation of a lithium–oxygen battery using a non-carbonate-based electrolyte. Chemical Communications, 2012, 48, 8374.	2.2	100
100	A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. Chemical Communications, 2016, 52, 12618-12621.	2.2	99
101	A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes. Physical Chemistry Chemical Physics, 2012, 14, 3299.	1.3	98
102	Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in Highâ€Energy Layered Lithiumâ€Rich Electrodes. Advanced Energy Materials, 2018, 8, 1800606.	10.2	97
103	Exploiting Biological Systems: Toward Eco-Friendly and High-Efficiency Rechargeable Batteries. Joule, 2018, 2, 61-75.	11.7	96
104	Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy, 2017, 2, .	19.8	94
105	Challenges and Strategies towards Practically Feasible Solidâ€State Lithium Metal Batteries. Advanced Materials, 2022, 34, e2104666.	11.1	93
106	Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study. Chemistry of Materials, 2010, 22, 518-523.	3.2	91
107	First-Principles Study of the Reaction Mechanism in Sodium–Oxygen Batteries. Chemistry of Materials, 2014, 26, 1048-1055.	3.2	91
108	Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries. Journal of Power Sources, 2016, 320, 49-58.	4.0	91

#	Article	IF	CITATIONS
109	Tailoring a fluorophosphate as a novel 4 V cathode for lithium-ion batteries. Scientific Reports, 2012, 2, 704.	1.6	90
110	Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nature Materials, 2022, 21, 664-672.	13.3	89
111	Stable and Highâ€Power Calciumâ€Ion Batteries Enabled by Calcium Intercalation into Graphite. Advanced Materials, 2020, 32, e1904411.	11.1	87
112	Tailored Oxygen Framework of Li ₄ Ti ₅ O ₁₂ Nanorods for High-Power Li Ion Battery. Journal of Physical Chemistry Letters, 2014, 5, 1368-1373.	2.1	86
113	Scalable Functionalized Graphene Nano-platelets as Tunable Cathodes for High-performance Lithium Rechargeable Batteries. Scientific Reports, 2013, 3, 1506.	1.6	84
114	Amorphous Cobalt Phyllosilicate with Layered Crystalline Motifs as Water Oxidation Catalyst. Advanced Materials, 2017, 29, 1606893.	11.1	84
115	Mn based olivine electrode material with high power and energy. Chemical Communications, 2010, 46, 1305.	2.2	81
116	The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li ₂ C ₆ O ₆ , Using Combined Experimental and First Principle Studies. Journal of Physical Chemistry Letters, 2014, 5, 3086-3092.	2.1	81
117	Crumpled graphene paper for high power sodium battery anode. Carbon, 2016, 99, 658-664.	5.4	81
118	Graphitic Carbon Materials for Advanced Sodiumâ€ion Batteries. Small Methods, 2019, 3, 1800227.	4.6	81
119	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 18662-18669.	7.2	81
120	Unveiling the Intrinsic Cycle Reversibility of a LiCoO ₂ Electrode at 4.8-V Cutoff Voltage through Subtractive Surface Modification for Lithium-Ion Batteries. Nano Letters, 2019, 19, 29-37.	4.5	78
121	Phenoxazine as a high-voltage p-type redox center for organic battery cathode materials: small structural reorganization for faster charging and narrow operating voltage. Energy and Environmental Science, 2020, 13, 4142-4156.	15.6	78
122	Multifunctional Interface for High-Rate and Long-Durable Garnet-Type Solid Electrolyte in Lithium Metal Batteries. ACS Energy Letters, 2022, 7, 381-389.	8.8	76
123	Li ₃ V ₂ (PO ₄) ₃ /Conducting Polymer as a High Power 4 Vâ€Class Lithium Battery Electrode. Advanced Energy Materials, 2013, 3, 1004-1007.	10.2	75
124	Extremely High Yield Conversion from Lowâ€Cost Sand to Highâ€Capacity Si Electrodes for Liâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1400622.	10.2	75
125	Deposition and Stripping Behavior of Lithium Metal in Electrochemical System: Continuum Mechanics Study. Chemistry of Materials, 2018, 30, 6769-6776.	3.2	74
126	Novel transition-metal-free cathode for high energy and power sodium rechargeable batteries. Nano Energy, 2014, 4, 97-104.	8.2	71

#	Article	IF	CITATIONS
127	Hollow Nanostructured Metal Silicates with Tunable Properties for Lithium Ion Battery Anodes. ACS Applied Materials & Interfaces, 2015, 7, 25725-25732.	4.0	71
128	Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Materials, 2019, 20, 462-469.	9.5	70
129	Synthesis, Electrochemical Properties, and Phase Stability of Li2NiO2 with the Immm Structure. Chemistry of Materials, 2004, 16, 2685-2690.	3.2	69
130	First-principles study on lithium metal borate cathodes for lithium rechargeable batteries. Physical Review B, 2011, 83, .	1.1	69
131	Simple Preparation of Highâ€Quality Graphene Flakes without Oxidation Using Potassium Salts. Small, 2011, 7, 864-868.	5.2	69
132	High-performance supercapacitors based on defect-engineered carbon nanotubes. Carbon, 2014, 80, 246-254.	5.4	68
133	Hierarchical Porous Carbonized Co ₃ O ₄ Inverse Opals via Combined Block Copolymer and Colloid Templating as Bifunctional Electrocatalysts in Li–O ₂ Battery. Advanced Energy Materials, 2017, 7, 1700391.	10.2	68
134	Anisotropic Surface Modulation of Pt Catalysts for Highly Reversible Li–O ₂ Batteries: High Index Facet as a Critical Descriptor. ACS Catalysis, 2018, 8, 9006-9015.	5.5	68
135	High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility. Nature Communications, 2022, 13, 1883.	5.8	67
136	NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods. Journal of Materials Chemistry, 2007, 17, 3167.	6.7	66
137	Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization. Chemistry of Materials, 2010, 22, 2573-2581.	3.2	66
138	Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries. Electrochemistry Communications, 2014, 44, 74-77.	2.3	66
139	Ultraâ€Thin Hollow Carbon Nanospheres for Pseudocapacitive Sodiumâ€Ion Storage. ChemElectroChem, 2015, 2, 359-365.	1.7	66
140	Highly Stable Iron- and Manganese-Based Cathodes for Long-Lasting Sodium Rechargeable Batteries. Chemistry of Materials, 2016, 28, 7241-7249.	3.2	66
141	Factors Affecting the Exfoliation of Graphite Intercalation Compounds for Graphene Synthesis. Chemistry of Materials, 2015, 27, 2067-2073.	3.2	65
142	Tailoring a New 4V lass Cathode Material for Naâ€ŀon Batteries. Advanced Energy Materials, 2016, 6, 1502147.	10.2	65
143	Efficient Method of Designing Stable Layered Cathode Material for Sodium Ion Batteries Using Aluminum Doping. Journal of Physical Chemistry Letters, 2017, 8, 5021-5030.	2.1	65
144	High-Voltage Phosphate Cathodes for Rechargeable Ca-Ion Batteries. ACS Energy Letters, 2020, 5, 3203-3211.	8.8	65

#	Article	IF	CITATIONS
145	High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Letters, 2021, 6, 4416-4425.	8.8	63
146	Conversionâ€Based Cathode Materials for Rechargeable Sodium Batteries. Advanced Energy Materials, 2018, 8, 1702646.	10.2	62
147	Investigation on the interface between Li10GeP2S12 electrolyte and carbon conductive agents in all-solid-state lithium battery. Scientific Reports, 2018, 8, 8066.	1.6	62
148	LiFePO4 with an alluaudite crystal structure for lithium ion batteries. Energy and Environmental Science, 2013, 6, 830.	15.6	61
149	Understanding Origin of Voltage Hysteresis in Conversion Reaction for Na Rechargeable Batteries: The Case of Cobalt Oxides. Advanced Functional Materials, 2016, 26, 5042-5050.	7.8	61
150	New 4V-Class and Zero-Strain Cathode Material for Na-Ion Batteries. Chemistry of Materials, 2017, 29, 7826-7832.	3.2	61
151	Bio-inspired Molecular Redesign of a Multi-redox Catholyte for High-Energy Non-aqueous Organic Redox Flow Batteries. CheM, 2019, 5, 2642-2656.	5.8	61
152	Bifunctional MnO ₂ -Coated Co ₃ O ₄ Hetero-structured Catalysts for Reversible Li-O ₂ Batteries. Chemistry of Materials, 2017, 29, 10542-10550.	3.2	60
153	First principles study of Li diffusion in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>I-Li</mml:mtext></mml:mrow><mml:mn> Physical Review B, 2009, 79, .</mml:mn></mml:msub></mml:mrow></mml:math>	2/miml:m	์ท> ฮ9่mml:m รเ
154	Theoretical Evidence for Low Charging Overpotentials of Superoxide Discharge Products in Metal–Oxygen Batteries. Chemistry of Materials, 2015, 27, 8406-8413.	3.2	59
155	Design and synthesis of multigrain nanocrystals via geometric misfit strain. Nature, 2020, 577, 359-363.	13.7	59
156	A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nature Communications, 2021, 12, 3369.	5.8	59
157	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	11.1	58
158	High-Rate and High-Areal-Capacity Air Cathodes with Enhanced Cycle Life Based on RuO ₂ /MnO ₂ Bifunctional Electrocatalysts Supported on CNT for Pragmatic Li–O ₂ Batteries. ACS Catalysis, 2018, 8, 2923-2934.	5.5	57
159	Enhanced Stability of Coated Carbon Electrode for Liâ€O ₂ Batteries and Its Limitations. Advanced Energy Materials, 2018, 8, 1702661.	10.2	57
160	Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 17415-17424.	5.2	56
161	Synthesis and Electrochemical Properties of Layered Li0.9Ni0.45Ti0.55O2. Chemistry of Materials, 2003, 15, 4503-4507.	3.2	55
162	A robust design of Ru quantum dot/N-doped holey graphene for efficient Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 619-631.	5.2	55

#	Article	IF	CITATIONS
163	Direct Observation of Redox Mediator-Assisted Solution-Phase Discharging of Li–O ₂ Battery by Liquid-Phase Transmission Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 8047-8052.	6.6	54
164	Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. Journal of Power Sources, 2020, 468, 228369.	4.0	54
165	Synthesis of graphene-wrapped CuO hybrid materials by CO2 mineralization. Green Chemistry, 2012, 14, 2391.	4.6	53
166	Mg and Fe Co-doped Mn Based Olivine Cathode Material for High Power Capability. Journal of the Electrochemical Society, 2011, 158, A250.	1.3	52
167	Anti-Site Reordering in LiFePO ₄ : Defect Annihilation on Charge Carrier Injection. Chemistry of Materials, 2014, 26, 5345-5351.	3.2	52
168	In situ multiscale probing of the synthesis of a Ni-rich layered oxide cathode reveals reaction heterogeneity driven by competing kinetic pathways. Nature Chemistry, 2022, 14, 614-622.	6.6	52
169	Redox Mediators: A Solution for Advanced Lithium–Oxygen Batteries. Trends in Chemistry, 2019, 1, 349-360.	4.4	50
170	Biological Redox Mediation in Electron Transport Chain of Bacteria for Oxygen Reduction Reaction Catalysts in Lithium–Oxygen Batteries. Advanced Functional Materials, 2019, 29, 1805623.	7.8	50
171	Lithium-excess olivine electrode for lithium rechargeable batteries. Energy and Environmental Science, 2016, 9, 2902-2915.	15.6	49
172	Mechanism of Co3O4/graphene catalytic activity in Li–O2 batteries using carbonate based electrolytes. Electrochimica Acta, 2013, 90, 63-70.	2.6	48
173	Tuning the Carbon Crystallinity for Highly Stable Li–O ₂ Batteries. Chemistry of Materials, 2016, 28, 8160-8169.	3.2	47
174	Utilizing Latent Multiâ€Redox Activity of pâ€Type Organic Cathode Materials toward High Energy Density Lithiumâ€Organic Batteries. Advanced Energy Materials, 2020, 10, 2001635.	10.2	47
175	Restoration of thermally reduced graphene oxide by atomic-level selenium doping. NPG Asia Materials, 2016, 8, e338-e338.	3.8	45
176	Anionic Redox Activity Regulated by Transition Metal in Lithiumâ€Rich Layered Oxides. Advanced Energy Materials, 2020, 10, 2001207.	10.2	45
177	Solvated Ion Intercalation in Graphite: Sodium and Beyond. Frontiers in Chemistry, 2020, 8, 432.	1.8	45
178	Graphene-Based Hybrid Electrode Material for High-Power Lithium-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A930.	1.3	44
179	Energy storage in composites of a redox couple host and a lithium ion host. Nano Today, 2012, 7, 168-173.	6.2	44
180	Thermal stability of Fe–Mn binary olivine cathodes for Li rechargeable batteries. Journal of Materials Chemistry, 2012, 22, 11964.	6.7	43

#	Article	IF	CITATIONS
181	Ion-Exchange Mechanism of Layered Transition-Metal Oxides: Case Study of LiNi _{0.5} Mn _{0.5} O ₂ . Inorganic Chemistry, 2014, 53, 8083-8087.	1.9	43
182	Super-Ionic Conduction in Solid-State Li ₇ P ₃ S ₁₁ -Type Sulfide Electrolytes. Chemistry of Materials, 2018, 30, 8764-8770.	3.2	43
183	High and rapid alkali cation storage in ultramicroporous carbonaceous materials. Journal of Power Sources, 2016, 313, 142-151.	4.0	42
184	A Biodegradable Secondary Battery and its Biodegradation Mechanism for Ecoâ€Friendly Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2004902.	11.1	42
185	The predicted crystal structure of Li4C6O6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods. Energy and Environmental Science, 2011, 4, 4938.	15.6	41
186	Study on structure and electrochemical properties of carbon-coated monoclinic Li3V2(PO4)3 using synchrotron based in situ X-ray diffraction and absorption. Journal of Alloys and Compounds, 2013, 569, 76-81.	2.8	41
187	Moisture Barrier Composites Made of Nonâ€Oxidized Graphene Flakes. Small, 2015, 11, 3124-3129.	5.2	41
188	Na ₃ V(PO ₄) ₂ : A New Layered-Type Cathode Material with High Water Stability and Power Capability for Na-Ion Batteries. Chemistry of Materials, 2018, 30, 3683-3689.	3.2	41
189	Defect-free solvothermally assisted synthesis of microspherical mesoporous LiFePO4/C. RSC Advances, 2013, 3, 3421.	1.7	40
190	High-efficiency and high-power rechargeable lithium–sulfur dioxide batteries exploiting conventional carbonate-based electrolytes. Nature Communications, 2017, 8, 14989.	5.8	40
191	Using Firstâ€Principles Calculations for the Advancement of Materials for Rechargeable Batteries. Advanced Functional Materials, 2017, 27, 1702887.	7.8	40
192	Electrochemical and ex-situ analysis on manganese oxide/graphene hybrid anode for lithium rechargeable batteries. Journal of Materials Research, 2011, 26, 2665-2671.	1.2	39
193	A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy and Environmental Science, 2020, 13, 1269-1278.	15.6	39
194	Synthesis and electrochemical properties of layered LiNi2/3Sb1/3O2. Journal of Power Sources, 2007, 173, 550-555.	4.0	38
195	Porous silicon nanowires for lithium rechargeable batteries. Nanotechnology, 2013, 24, 424008.	1.3	38
196	A New Perspective on Li–SO ₂ Batteries for Rechargeable Systems. Angewandte Chemie - International Edition, 2015, 54, 9663-9667.	7.2	37
197	Nano-graphite platelet loaded with LiFePO4 nanoparticles used as the cathode in a high performance Li-ion battery. Carbon, 2012, 50, 1966-1971.	5.4	36
198	Polymorphism and phase transformations of Li2â^'xFeSiO4(0⩽x⩽2) from first principles. Physical Review 2011, 84, .	B, _{1.1}	35

#	Article	IF	CITATIONS
199	Size-selective synthesis of mesoporous LiFePO ₄ /C microspheres based on nucleation and growth rate control of primary particles. Journal of Materials Chemistry A, 2014, 2, 5922-5927.	5.2	35
200	Stepwise Dopant Selection Process for Highâ€Nickel Layered Oxide Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	35
201	Porous β-MnO ₂ nanoplates derived from MnCO ₃ nanoplates as highly efficient electrocatalysts toward oxygen evolution reaction. RSC Advances, 2016, 6, 26535-26539.	1.7	34
202	Superoxide stability for reversible Na-O2 electrochemistry. Scientific Reports, 2017, 7, 17635.	1.6	34
203	Native Defects in Li ₁₀ GeP ₂ S ₁₂ and Their Effect on Lithium Diffusion. Chemistry of Materials, 2018, 30, 4995-5004.	3.2	33
204	The role of substituents in determining the redox potential of organic electrode materials in Li and Na rechargeable batteries: electronic effects <i>vs.</i> substituent-Li/Na ionic interaction. Journal of Materials Chemistry A, 2019, 7, 11438-11443.	5.2	33
205	Comparative study of Li(Li1/3Ti5/3)O4 and Li(Ni1/2â^'Li2/3Ti/3)Ti3/2O4 (x= 1/3) anodes for Li rechargeable batteries. Electrochimica Acta, 2009, 54, 5914-5918.	2.6	32
206	Alluaudite LiMnPO4: a new Mn-based positive electrode for Li rechargeable batteries. Journal of Materials Chemistry A, 2014, 2, 8632-8636.	5.2	32
207	Simple and Effective Gas-Phase Doping for Lithium Metal Protection in Lithium Metal Batteries. Chemistry of Materials, 2017, 29, 9182-9191.	3.2	32
208	Predicting the chemical reactivity of organic materials using a machine-learning approach. Chemical Science, 2020, 11, 7813-7822.	3.7	32
209	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie - International Edition, 2020, 59, 5376-5380.	7.2	31
210	Mechanochemical synthesis and electrochemical behavior of Na3FeF6 in sodium and lithium batteries. Solid State Ionics, 2012, 218, 35-40.	1.3	30
211	Tin Sulfideâ€Based Nanohybrid for Highâ€Performance Anode of Sodiumâ€Ion Batteries. Small, 2017, 13, 1700767.	5.2	30
212	Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors. Journal of Power Sources, 2017, 362, 358-365.	4.0	30
213	Tailoring Ion-Conducting Interphases on Magnesium Metals for High-Efficiency Rechargeable Magnesium Metal Batteries. ACS Energy Letters, 2020, 5, 3733-3740.	8.8	30
214	Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools. Advanced Energy Materials, 2021, 11, 2003039.	10.2	30
215	A p–n fusion strategy to design bipolar organic materials for high-energy-density symmetric batteries. Journal of Materials Chemistry A, 2021, 9, 14485-14494.	5.2	30
216	Three-dimensionally branched carbon nanowebs as air-cathode for redox-mediated Li-O2 batteries. Carbon, 2017, 118, 114-119.	5.4	29

#	Article	IF	CITATIONS
217	All-carbon-based cathode for a true high-energy-density Li-O2 battery. Carbon, 2017, 114, 311-316.	5.4	29
218	Roll-to-Roll Laser-Printed Graphene–Graphitic Carbon Electrodes for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 1033-1038.	4.0	29
219	Achieving outstanding Li + -ORR and -OER activities via edge- and corner-embedded bimetallic nanocubes for rechargeable Li–O 2 batteries. Nano Energy, 2015, 18, 71-80.	8.2	28
220	<i>In Situ</i> Tracking Kinetic Pathways of Li ⁺ /Na ⁺ Substitution during Ion-Exchange Synthesis of Li _{<i>x</i>} Na _{1.5–<i>x</i>} VOPO ₄ F _{0.5} . Journal of the American Chemical Society, 2017, 139, 12504-12516.	6.6	28
221	First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2S) in Lithium-Sulfur Batteries. Chemistry - an Asian Journal, 2016, 11, 1288-1292.	1.7	27
222	A comparative kinetic study of redox mediators for high-power lithium–oxygen batteries. Journal of Materials Chemistry A, 2019, 7, 6491-6498.	5.2	27
223	Real-time visualization of Zn metal plating/stripping in aqueous batteries with high areal capacities. Journal of Power Sources, 2020, 472, 228334.	4.0	27
224	Versatile Redox-Active Organic Materials for Rechargeable Energy Storage. Accounts of Chemical Research, 2021, 54, 4423-4433.	7.6	27
225	First-Principles Design of Hydrogen Dissociation Catalysts Based on Isoelectronic Metal Solid Solutions. Journal of Physical Chemistry Letters, 2014, 5, 1819-1824.	2.1	26
226	Synthesis of nano-Li4Ti5O12 decorated on non-oxidized carbon nanotubes with enhanced rate capability for lithium-ion batteries. RSC Advances, 2013, 3, 14267.	1.7	25
227	Multi-redox phenazine/non-oxidized graphene/cellulose nanohybrids as ultrathick cathodes for high-energy organic batteries. Nano Research, 2021, 14, 1382-1389.	5.8	24
228	Extremely large, non-oxidized graphene flakes based on spontaneous solvent insertion into graphite intercalation compounds. Carbon, 2018, 139, 309-316.	5.4	23
229	First-Principles Investigations on Sodium Superionic Conductor Na ₁₁ Sn ₂ PS ₁₂ . Chemistry of Materials, 2019, 31, 6066-6075.	3.2	23
230	A theoretical framework for oxygen redox chemistry for sustainable batteries. Nature Sustainability, 2022, 5, 708-716.	11.5	23
231	The effect of titanium in Li ₃ V ₂ (PO ₄) ₃ /graphene composites as cathode material for high capacity Li-ion batteries. RSC Advances, 2015, 5, 4872-4879.	1.7	22
232	Bifunctional Oxygen Electrocatalysts for Lithiumâ^'Oxygen Batteries. Batteries and Supercaps, 2019, 2, 311-325.	2.4	22
233	Tunable Redox-Active Triazenyl–Carbene Platforms: A New Class of Anolytes for Non-Aqueous Organic Redox Flow Batteries. ACS Applied Materials & Interfaces, 2020, 12, 37338-37345. 	4.0	22
234	Simultaneous anionic and cationic redox. Nature Energy, 2017, 2, 912-913.	19.8	21

#	Article	IF	CITATIONS
235	Amorphous multinary phyllosilicate catalysts for electrochemical water oxidation. Journal of Materials Chemistry A, 2019, 7, 18380-18387.	5.2	21
236	Unveiling the Role of Transitionâ€Metal Ions in the Thermal Degradation of Layered Ni–Co–Mn Cathodes for Lithium Rechargeable Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
237	New Iron-Based Intercalation Host for Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 1956-1964.	3.2	20
238	Dualâ€Functioning Molecular Carrier of Superoxide Radicals for Stable and Efficient Lithium–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1904187.	10.2	20
239	Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2019, 58, 16764-16769.	7.2	19
240	The Effect of Particle Size on Phase Stability of the Delithiated Li _{<i>x</i>} MnPO ₄ . Journal of the Electrochemical Society, 2011, 159, A55-A59.	1.3	18
241	Redesign of Li ₂ MP ₂ O ₇ (M = Fe or Mn) by Tuning the Li Diffusion in Rechargeable Battery Electrodes. Chemistry of Materials, 2016, 28, 6894-6899.	3.2	17
242	TiO2@SnO2@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2365-2371.	1.2	17
243	NaF–FeF2 nanocomposite: New type of Na-ion battery cathode material. Nano Research, 2017, 10, 4388-4397.	5.8	17
244	Atomistic Investigation of Doping Effects on Electrocatalytic Properties of Cobalt Oxides for Water Oxidation. Advanced Science, 2018, 5, 1801632.	5.6	17
245	Blue Graphene Quantum Dots with High Color Purity by Controlling Subdomain Formation for Light-Emitting Devices. ACS Applied Nano Materials, 2020, 3, 6469-6477.	2.4	17
246	Factors that Affect the Phase Behavior of Multi-Component Olivine (LiFe <i>_x</i> Mn <i>_y</i> Co _{1-<i>x</i>y} PO ₄ ; 0) Tj ETC Reaction Journal of the Electrochemical Society 2013, 160, 4444-4448	2q0,0 0 rg	BT /Overlock
247	Intrinsic Nanodomains in Triplite LiFeSO ₄ F and Its Implication in Lithiumâ€ion Diffusion. Advanced Energy Materials, 2018, 8, 1701408.	10.2	16
248	Surface-Modified Spinel LiNi0.5Mn1.5O4 for Li-Ion Batteries. Journal of the Korean Ceramic Society, 2018, 55, 21-35.	1.1	16
249	Highly Durable and Stable Sodium Superoxide in Concentrated Electrolytes for Sodium–Oxygen Batteries. Advanced Energy Materials, 2018, 8, 1801760.	10.2	15
250	Enhancing the cycle stability of Li–O ₂ batteries <i>via</i> functionalized carbon nanotube-based electrodes. Journal of Materials Chemistry A, 2020, 8, 4263-4273.	5.2	15
251	Activating layered LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a host for Mg intercalation in rechargeable Mg batteries. Materials Research Bulletin, 2017, 96, 524-532.	2.7	14
252	Long-lived electrodes for plastic batteries. Nature, 2017, 549, 339-340.	13.7	13

#	Article	IF	CITATIONS
253	Highly persistent triphenylamine-based catholyte for durable organic redox flow batteries. Energy Storage Materials, 2021, 42, 185-192.	9.5	13
254	Ribbon-like activated carbon with a multi-structure for supercapacitors. Journal of Materials Chemistry A, 2013, 1, 14008.	5.2	12
255	Nb-doped TiO ₂ air-electrode for advanced Li-air batteries. Journal of Asian Ceramic Societies, 2015, 3, 77-81.	1.0	12
256	Functional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles. Journal of Power Sources, 2016, 334, 52-57.	4.0	12
257	Interfacial Engineering in a Cathode Composite Based on Garnetâ€Type Solidâ€State Liâ€Ion Battery with High Voltage Cycling. ChemElectroChem, 2021, 8, 570-576.	1.7	12
258	Enhancement of Oxygen Reduction Reaction Catalytic Activity via the Modified Surface of La0.6Sr0.4Co0.2Fe0.8O3â^î´û with Palladium Nanoparticles as Cathode for Lithium–Air Battery. ACS Applied Energy Materials, 2018, , .	2.5	11
259	Pyrrolinium-Substituted Persistent Zwitterionic Ferrocenate Derivative Enabling the Application of Ferrocene Anolyte. ACS Applied Materials & amp; Interfaces, 2021, 13, 46558-46565.	4.0	11
260	Glyoxalated polyacrylamide as a covalently attachable and rapidly cross-linkable binder for Si electrode in lithium ion batteries. Electronic Materials Letters, 2017, 13, 136-141.	1.0	10
261	Investigation of Li–O ₂ Battery Performance Integrated with RuO ₂ Inverse Opal Cathodes in DMSO. ACS Applied Energy Materials, 2019, 2, 5109-5115.	2.5	10
262	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie, 2020, 132, 5414-5418.	1.6	10
263	Invited paper: Preparation and electrochemical characterization of doped spinel LiMn1.88Ge0.1Li0.02O4 cathode material. Electronic Materials Letters, 2011, 7, 105-108.	1.0	9
264	Pseudocapacitive Behavior and Ultrafast Kinetics from Solvated Ion Cointercalation into MoS ₂ for Its Alkali Ion Storage. ACS Applied Energy Materials, 2019, 2, 3726-3735.	2.5	9
265	Enhancing Bifunctional Catalytic Activity via a Nanostructured La(Sr)Fe(Co)O _{3â~î^} @Pd Matrix as an Efficient Electrocatalyst for Li–O ₂ Batteries. ACS Applied Energy Materials, 2019, 2, 8633-8640.	2.5	9
266	Liquidâ€Based Janus Electrolyte for Sustainable Redox Mediation in Lithium–Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2102096.	10.2	9
267	Energy storage capabilities of nitrogen-enriched pyropolymer nanoparticles fabricated through rapid pyrolysis. Journal of Power Sources, 2016, 331, 507-514.	4.0	8
268	In operando formation of new iron-oxyfluoride host structure for Na-ion storage from NaF–FeO nanocomposite. Energy Storage Materials, 2019, 23, 427-433.	9.5	8
269	Catalytic Effects of Heteroatom-doped Graphene Nanosheets on the Performance of Li-O2Batteries. Journal of Electrochemical Science and Technology, 2014, 5, 49-52.	0.9	7
270	Energy storage in in vivo synthesizable biominerals. RSC Advances, 2012, 2, 5499.	1.7	6

#	Article	IF	CITATIONS
271	Chemical Origins of Electrochemical Overpotential in Surfaceâ€Conversion Nanocomposite Cathodes. Advanced Energy Materials, 2019, 9, 1900503.	10.2	6
272	Core–Shell Structure of Mo-Based Nanoparticle/Carbon Nanotube/Amorphous Carbon Composites as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Nano Materials, 2022, 5, 6555-6563.	2.4	6
273	Thermal structural stability of a multi-component olivine electrode for lithium ion batteries. CrystEngComm, 2016, 18, 7463-7470.	1.3	5
274	Trackable galvanostatic history in phase separation based electrodes for lithium-ion batteries: a mosaic sub-grouping intercalation model. Energy and Environmental Science, 2017, 10, 2352-2364.	15.6	5
275	A bifunctional auxiliary electrode for safe lithium metal batteries. Journal of Materials Chemistry A, 2019, 7, 24807-24813.	5.2	4
276	Aqueous ionic effect on electrochemical breakdown of Si-dielectric–electrolyte interface. Scientific Reports, 2020, 10, 16795.	1.6	4
277	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. Angewandte Chemie - International Edition, 2020, 59, 18457-18462.	7.2	4
278	Energy Storage: Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems (Adv. Funct. Mater. 4/2015). Advanced Functional Materials, 2015, 25, 652-652.	7.8	3
279	Biological Nicotinamide Cofactor as a Redoxâ€Active Motif for Reversible Electrochemical Energy Storage. Angewandte Chemie, 2019, 131, 16920-16925.	1.6	3
280	Calciumâ€lon Batteries: Stable and Highâ€Power Calciumâ€lon Batteries Enabled by Calcium Intercalation into Graphite (Adv. Mater. 4/2020). Advanced Materials, 2020, 32, 2070029.	11.1	3
281	In operando visualization of redox flow battery in membrane-free microfluidic platform. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	3
282	Capacitors: Going Beyond Lithium Hybrid Capacitors: Proposing a New Highâ€Performing Sodium Hybrid Capacitor System for Nextâ€Generation Hybrid Vehicles Made with Bioâ€Inspired Activated Carbon (Adv.) Tj ETQ	9q Q10.0 rg	BT 20verlock
283	Controlling Residual Lithium in Highâ€Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 18821-18828.	1.6	2
284	Planting Repulsion Centers for Faster Ionic Diffusion in Superionic Conductors. Angewandte Chemie, 2020, 132, 18615-18620.	1.6	2
285	Bio-Inspired Synthesis of Electrode Materials for Lithium Rechargeable Batteries. , 2011, , .		1
286	Lithiumâ€lon Batteries: A Stretchable Polymer–Carbon Nanotube Composite Electrode for Flexible Lithiumâ€lon Batteries: Porosity Engineering by Controlled Phase Separation (Adv. Energy Mater. 8/2012). Advanced Energy Materials, 2012, 2, 914-914.	10.2	1
287	Titelbild: Redox Cofactor from Biological Energy Transduction as Molecularly Tunable Energy-Storage Compound (Angew. Chem. 32/2013). Angewandte Chemie, 2013, 125, 8329-8329.	1.6	1
288	Bifunctional Oxygen Electrocatalysts for Lithiumâ€Oxygen Batteries. Batteries and Supercaps, 2019, 2, 269-269.	2.4	1

#	Article	IF	CITATIONS
289	Synthesis, Electrochemical Properties, and Phase Stability of Li2NiO2 with the Immm Structure ChemInform, 2004, 35, no.	0.1	0

290 Lithiumâ€Ion Batteries: Organic Nanohybrids for Fast and Sustainable Energy Storage (Adv. Mater.) Tj ETQq0 0 0 rgBT_/Overlock 10 Tf 50

291	Rücktitelbild: A New Perspective on Li-SO2Batteries for Rechargeable Systems (Angew. Chem. 33/2015). Angewandte Chemie, 2015, 127, 9860-9860.	1.6	0	
-----	--	-----	---	--