Paul A M Smeets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6556784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibitory control as a potential treatment target for obesity. Nutritional Neuroscience, 2023, 26, 429-444.	1.5	11
2	Monitoring pH and whey protein digestion by TD-NMR and MRI in a novel semi-dynamic in vitro gastric simulator (MR-GAS). Food Hydrocolloids, 2022, 125, 107393.	5.6	14
3	OUP accepted manuscript. American Journal of Clinical Nutrition, 2022, 115, 598-600.	2.2	0
4	Examining the neural correlates of goal priming with the NeuroShop, a novel virtual reality fMRI paradigm. Appetite, 2022, 170, 105901.	1.8	6
5	Non-invasive monitoring of in vitro gastric milk protein digestion kinetics by 1H NMR magnetization transfer. Food Chemistry, 2022, 383, 132545.	4.2	3
6	Monitoring food digestion with magnetic resonance techniques. Proceedings of the Nutrition Society, 2021, 80, 148-158.	0.4	15
7	The influence of acute partial sleep deprivation on liking, choosing and consuming high- and low-energy foods. Food Quality and Preference, 2021, 88, 104074.	2.3	3
8	Investigating morphological changes in the brain in relation to etiology and duration of olfactory dysfunction with voxel-based morphometry. Scientific Reports, 2021, 11, 12704.	1.6	9
9	A guide for authors and readers of the American Society for Nutrition Journals on the proper use of P values and strategies that promote transparency and improve research reproducibility. American Journal of Clinical Nutrition, 2021, 114, 1280-1285.	2.2	13
10	Gastric Emptying and Intragastric Behavior of Breast Milk and Infant Formula in Lactating Mothers. Journal of Nutrition, 2021, 151, 3718-3724.	1.3	8
11	Associations between ghrelin and leptin and neural food cue reactivity in a fasted and sated state. NeuroImage, 2021, 240, 118374.	2.1	18
12	Correlation between brain function and ADHD symptom changes in children with ADHD following a few-foods diet: an open-label intervention trial. Scientific Reports, 2021, 11, 22205.	1.6	5
13	Exploring in vitro gastric digestion of whey protein by time-domain nuclear magnetic resonance and magnetic resonance imaging. Food Hydrocolloids, 2020, 99, 105348.	5.6	23
14	Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. IEEE Transactions on Medical Imaging, 2020, 39, 4011-4022.	5.4	70
15	Good taste or gut feeling? A new method in rats shows oroâ€sensory stimulation and gastric distention generate distinct and overlapping brain activation patterns. International Journal of Eating Disorders, 2020, 54, 1116-1126.	2.1	6
16	Distraction decreases rIFG-putamen connectivity during goal-directed effort for food rewards. Scientific Reports, 2020, 10, 19072.	1.6	3
17	Endocrine Cephalic Phase Responses to Food Cues: A Systematic Review. Advances in Nutrition, 2020, 11, 1364-1383.	2.9	23
18	The importance of swelling for in vitro gastric digestion of whey protein gels. Food Chemistry, 2020, 330, 127182.	4.2	21

#	Article	IF	CITATIONS
19	Effects of distraction on taste-related neural processing: a cross-sectional fMRI study. American Journal of Clinical Nutrition, 2020, 111, 950-961.	2.2	19
20	How oro-sensory exposure and eating rate affect satiation and associated endocrine responses—a randomized trial. American Journal of Clinical Nutrition, 2020, 111, 1137-1149.	2.2	24
21	Development and body mass inversely affect children's brain activation in dorsolateral prefrontal cortex during food choice. NeuroImage, 2019, 201, 116016.	2.1	21
22	Colouring perception: Package colour cues affect neural responses to sweet dairy drinks in reward and inhibition related regions. Appetite, 2019, 142, 104378.	1.8	6
23	Unaware of the amount consumed: Systematic error in estimating food- and drink intake. Physiology and Behavior, 2019, 209, 112591.	1.0	0
24	Grab to eat! Eating motivation dynamics measured by effort exertion depend on hunger state. Food Quality and Preference, 2019, 78, 103741.	2.3	3
25	Good practice in food-related neuroimaging. American Journal of Clinical Nutrition, 2019, 109, 491-503.	2.2	56
26	Brain Responses to Anticipation and Consumption of Beer with and without Alcohol. Chemical Senses, 2019, 44, 51-60.	1.1	10
27	Health body priming and food choice: An eye tracking study. Food Quality and Preference, 2019, 72, 116-125.	2.3	30
28	Indirect vs direct assessment of gastric emptying: A randomized crossover trial comparing Câ€isotope breath analysis and <scp>MRI</scp> . Neurogastroenterology and Motility, 2018, 30, e13317.	1.6	16
29	Severity of olfactory deficits is reflected in functional brain networks—An fMRI study. Human Brain Mapping, 2018, 39, 3166-3177.	1.9	25
30	Aroma effects on food choice task behavior and brain responses to bakery food product cues. Food Quality and Preference, 2018, 68, 304-314.	2.3	20
31	Top-down expectation effects of food labels on motivation. NeuroImage, 2018, 173, 13-24.	2.1	19
32	Effects of hunger state on the brain responses to food cues across the life span. Neurolmage, 2018, 171, 246-255.	2.1	25
33	It's in the eye of the beholder: selective attention to drink properties during tasting influences brain activation in gustatory and reward regions. Brain Imaging and Behavior, 2018, 12, 425-436.	1.1	11
34	Men and Women Differ in Gastric Fluid Retention and Neural Activation after Consumption of Carbonated Beverages. Journal of Nutrition, 2018, 148, 1976-1983.	1.3	3
35	Volumetric gray matter measures of amygdala and accumbens in childhood overweight/obesity. PLoS ONE, 2018, 13, e0205331.	1.1	32
36	Altered neural inhibition responses to food cues after Roux-en-Y Gastric Bypass. Biological Psychology, 2018, 137, 34-41.	1.1	28

#	Article	IF	CITATIONS
37	Altered neural responsivity to food cues in relation to food preferences, but not appetite-related hormone concentrations after RYGB-surgery. Behavioural Brain Research, 2018, 353, 194-202.	1.2	42
38	Exacting Responses: Lack of Endocrine Cephalic Phase Responses Upon Oro-Sensory Exposure. Frontiers in Endocrinology, 2018, 9, 332.	1.5	9
39	Just add water: Effects of added gastric distention by water on gastric emptying and satiety related brain activity. Appetite, 2018, 127, 195-202.	1.8	14
40	Comparison of oro-sensory exposure duration and intensity manipulations on satiation. Physiology and Behavior, 2017, 176, 76-83.	1.0	46
41	A tale of gastric layering and sieving: Castric emptying of a liquid meal with water blended in or consumed separately. Physiology and Behavior, 2017, 176, 26-30.	1.0	20
42	The determinants of food choice. Proceedings of the Nutrition Society, 2017, 76, 316-327.	0.4	218
43	Considering healthiness promotes healthier choices but modulates medial prefrontal cortex differently in children compared with adults. NeuroImage, 2017, 159, 325-333.	2.1	21
44	Sensory expectation, perception, and autonomic nervous system responses to package colours and product popularity. Food Quality and Preference, 2017, 62, 60-70.	2.3	15
45	Goal-directed visual attention drives health goal priming: An eye-tracking experiment Health Psychology, 2017, 36, 82-90.	1.3	72
46	Folate and Vitamin B12-Related Biomarkers in Relation to Brain Volumes. Nutrients, 2017, 9, 8.	1.7	26
47	Health interest modulates brain reward responses to a perceived low-caloric beverage in females Health Psychology, 2017, 36, 65-72.	1.3	5
48	Neural Processing of Calories in Brain Reward Areas Can be Modulated by Reward Sensitivity. Frontiers in Behavioral Neuroscience, 2016, 9, 371.	1.0	2
49	Food Decision-Making: Effects of Weight Status and Age. Current Diabetes Reports, 2016, 16, 84.	1.7	53
50	Associations between neural correlates of visual stimulus processing and set-shifting in ill and recovered women with anorexia nervosa. Psychiatry Research - Neuroimaging, 2016, 255, 35-42.	0.9	13
51	Developmental differences in the brain response to unhealthy food cues: an fMRI study of children and adults. American Journal of Clinical Nutrition, 2016, 104, 1515-1522.	2.2	57
52	Empty calories and phantom fullness: a randomized trial studying the relative effects of energy density and viscosity on gastric emptying determined by MRI and satiety. American Journal of Clinical Nutrition, 2016, 104, 73-80.	2.2	71
53	Subtypes of trait impulsivity differentially correlate with neural responses to food choices. Behavioural Brain Research, 2016, 296, 442-450.	1.2	32
54	Supersize my brain: A cross-sectional voxel-based morphometry study on the association between self-reported dietary restraint and regional grey matter volumes. Biological Psychology, 2016, 117, 108-116.	1.1	11

#	Article	IF	CITATIONS
55	Effects of omega-3 polyunsaturated fatty acids on human brain morphology and function: What is the evidence?. European Neuropsychopharmacology, 2016, 26, 546-561.	0.3	63
56	Standardized food images: A photographing protocol and image database. Appetite, 2016, 96, 166-173.	1.8	124
57	Neural Correlates of Intolerance of Uncertainty in Clinical Disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 2015, 27, 345-353.	0.9	21
58	Altered Food-Cue Processing in Chronically III and Recovered Women with Anorexia Nervosa. Frontiers in Behavioral Neuroscience, 2015, 9, 46.	1.0	55
59	Higher Serum 25-Hydroxyvitamin D and Lower Plasma Glucose Are Associated with Larger Gray Matter Volume but Not with White Matter or Total Brain Volume in Dutch Community-Dwelling Older Adults ,. Journal of Nutrition, 2015, 145, 1817-1823.	1.3	22
60	Tasting calories differentially affects brain activation during hunger and satiety. Behavioural Brain Research, 2015, 279, 139-147.	1.2	24
61	You are what you eat: a neuroscience perspective on consumers' personality characteristics as determinants of eating behavior. Current Opinion in Food Science, 2015, 3, 11-18.	4.1	17
62	Do you like what you see? The role of first fixation and total fixation duration in consumer choice. Food Quality and Preference, 2015, 39, 46-55.	2.3	142
63	What you see is what you eat: An ALE meta-analysis of the neural correlates of food viewing in children and adolescents. NeuroImage, 2015, 104, 35-43.	2.1	70
64	Functional MRI of Challenging Food Choices: Forced Choice between Equally Liked High- and Low-Calorie Foods in the Absence of Hunger. PLoS ONE, 2015, 10, e0131727.	1.1	37
65	The Sum of Its Parts—Effects of Gastric Distention, Nutrient Content and Sensory Stimulation on Brain Activation. PLoS ONE, 2014, 9, e90872.	1.1	28
66	Sweet lies: neural, visual, and behavioral measures reveal a lack of self-control conflict during food choice in weight-concerned women. Frontiers in Behavioral Neuroscience, 2014, 8, 184.	1.0	32
67	Activation in inhibitory brain regions during food choice correlates with temptation strength and self-regulatory success in weight-concerned women. Frontiers in Neuroscience, 2014, 8, 308.	1.4	38
68	Human protein status modulates brain reward responses to food cues. American Journal of Clinical Nutrition, 2014, 100, 113-122.	2.2	64
69	Taste matters – effects of bypassing oral stimulation on hormone and appetite responses. Physiology and Behavior, 2014, 137, 9-17.	1.0	36
70	To like or not to like: Neural substrates of subjective flavor preferences. Behavioural Brain Research, 2014, 269, 128-137.	1.2	26
71	Allured or alarmed: Counteractive control responses to food temptations in the brain. Behavioural Brain Research, 2013, 248, 41-45.	1.2	38
72	Appetite in the Brain. Special Publication - Royal Society of Chemistry, 2013, , 221-230.	0.0	0

#	Article	IF	CITATIONS
73	Effect of Replacing Sugar with Non-Caloric Sweeteners in Beverages on the Reward Value after Repeated Exposure. PLoS ONE, 2013, 8, e81924.	1.1	39
74	Anterior Cingulate Taste Activation Predicts Ad Libitum Intake of Sweet and Savory Drinks in Healthy, Normal-Weight Men. Journal of Nutrition, 2012, 142, 795-802.	1.3	24
75	Effects of Oral and Gastric Stimulation on Appetite and Energy Intake. Obesity, 2012, 20, 2226-2232.	1.5	54
76	Food-induced brain responses and eating behaviour. Proceedings of the Nutrition Society, 2012, 71, 511-520.	0.4	61
77	Appearance Matters: Neural Correlates of Food Choice and Packaging Aesthetics. PLoS ONE, 2012, 7, e41738.	1.1	74
78	Neuropsychological weaknesses in anorexia nervosa: Setâ€shifting, central coherence, and decision making in currently ill and recovered women. International Journal of Eating Disorders, 2012, 45, 685-694.	2.1	135
79	Consumption of caloric and non-caloric versions of a soft drink differentially affects brain activation during tasting. NeuroImage, 2011, 54, 1367-1374.	2.1	85
80	The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues. Neurolmage, 2011, 55, 296-303.	2.1	477
81	Satiety. Not the problem, nor a solution. Comment on â€~Satiety. No way to slim'. Appetite, 2011, 57, 772-77	'31.8	14
82	Conspicuity or visibility: What may cause an object to draw attention?. Food Quality and Preference, 2011, 22, 602.	2.3	2
83	Dietary learning: both consistency and congruency matter. Nature Reviews Endocrinology, 2010, 6, 1-1.	4.3	1
84	Cephalic phase responses and appetite. Nutrition Reviews, 2010, 68, 643-655.	2.6	193
85	Representation of Sweet and Salty Taste Intensity in the Brain. Chemical Senses, 2010, 35, 831-840.	1.1	80
86	Sip size of orangeade: effects on intake and sensory-specific satiation. British Journal of Nutrition, 2009, 102, 1091-1097.	1.2	83
87	Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E754-E758.	1.8	68
88	Glucose Ingestion Fails to Inhibit Hypothalamic Neuronal Activity in Patients With Type 2 Diabetes. Diabetes, 2007, 56, 2547-2550.	0.3	71
89	Effect of satiety on brain activation during chocolate tasting in men and women. American Journal of Clinical Nutrition, 2006, 83, 1297-1305.	2.2	141
90	Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. American Journal of Clinical Nutrition, 2005, 82, 1011-1016.	2.2	149

#	Article	IF	CITATIONS
91	Functional MRI of human hypothalamic responses following glucose ingestion. NeuroImage, 2005, 24, 363-368.	2.1	140
92	Biomarkers of satiation and satiety. American Journal of Clinical Nutrition, 2004, 79, 946-961.	2.2	439